
3 - Database Technologies and
SQL -- A Short Tutorial1

3.1 INTRODUCTION
3.2 DATABASE MANAGEMENT CONCEPTS

3.2.1 Files and Databases
3.2.2 Database Management System (DBMS)
3.2.3 Data Models and Categories of DBMS.
3.2.4 Data View Support
3.2.5 Data Definition Facilities
3.2.6 Data Manipulation Facilities
3.2.7 Operational Facilities

3.3 OVERVIEW OF RELATIONAL DATABASES
3.4 SQL -- A QUICK OVERVIEW

3.4.1 Data Definition
3.4.2 Data Retrieval
3.4.3 Data Modification
3.4.4 View Support
3.4.5 Administrative Facilities
3.4.6 Embedded SQL
3.4.7 Performance
3.4.8 SQL Products
3.4.9 Strengths and Weaknesses

3.5 SQL -- A CLOSER LOOK
3.5.1 Data Definition
3.5.2 Data Manipulation
3.5.3 Data Administration
3.5.4 References for Additional Information

3.6 OBJECT-ORIENTED SYSTEMS AND DATABASES
3.6.1 Introduction
3.6.2 Object-Oriented Databases
3.6.3 Objectizing a RDBMS

3.7 OVERVIEW OF DATABASE DESIGN
3.8 CHAPTER SUMMARY
3.9 CASE STUDY: DATABASES FOR XYZCORP
3.10 KEY REFERENCES

3.1 Introduction

Databases are used in almost all ebusiness applications. These databases may use different database
management systems from different vendors and may reside on different computers (microcomputers,

1 Co-authored by Kamran Khalid

CHAPTER THREE: DATABASE TECHNOLOGIESAND SQL -- A SHORT TUTORIAL

COPYRIGHTED (AMJAD UMAR) 3-2

minicomputers, mainframes) which are interconnected through different networks. The focus of this
tutorial is primarily on how different databases are used for different applications in contemporary
enterprises. In this short and informal tutorial, we will give a broad perspective and highlight the
database concepts and technologies as they relate to ebusiness. Due to the space limitations, it is not
possible to include many details. Numerous books have been written on different aspects of databases
by now. The following books (some are classics and have gone through several editions) are
recommended for additional information:

� Date, C., “An Introduction to Database Systems”, Addison Wesley
� Elmasri and Navathe, “Fundamentals of Database Systems”, Benjamin Cummings
� Martin, D., “Advanced Database Techniques”, MIT Press
� Teorey, T.J., “Database Design”, Prentice Hall
� Hernandez, M. “Database Design for Mere Mortals : A Hands-On Guide to Relational Databases”

Addison-Wesley, 1997
� Muller, J., “Database Design for Smarties: Using UML for Data Modeling”, Morgan Kaufman, 1999

3.2 Database Management Concepts

3.2.1 Files and Databases

At the lowest level, a data item is the smallest unit of data which cannot be subdivided. Examples of
data items are part_no, part_name, weight, cost, etc. A data record is a collection of data items. An
example of a data record is a part record which is a collection of part_no, part_name, weight and cost
of a part. A file is a collection of similar data records. For example, a customer file consists of customer
records and a parts-file consists of part records. Examples of files, also called “flat files”, are text files,
html files, XML files, etc.

Conceptually, a database is a collection of files (dissimilar records). For example, a manufacturing
database is a collection of data records and files associated with manufacturing activities (e.g., finished
goods inventory, bill of materials, equipment), and a financial database consists of payroll data,
accounts receivable, general ledger, etc. It is common to assign additional properties to a database
definition. For example, according to Elmasri and Navathe [Elmasri 1989]:

 "A database has the following implicit properties:

� A database is a logically coherent collection of data with some inherent meaning. A random
assortment of data cannot be referred to as a database.

� A database is designed, built, and populated with data for a specific purpose. It has an
intended group of users and some preconceived applications in which these users are
interested.

� A database represents some aspect of the real world. Changes to the miniworld are reflected
in the database."

In a database environment, different users can view, access and manipulate the data in a database.
The database may be a business database for financial and administrative applications; a
manufacturing database containing bills of material, goods inventory and scheduling data; an office
database consisting of memos and proposals; and a knowledgebase for artificial intelligence and
expert system applications.

3.2.2 Database Management System (DBMS)

Database access and manipulation are controlled by a database management system (DBMS). A
DBMS, shown in Figure 3-1, is a software package which is designed to

CHAPTER THREE: DATABASE TECHNOLOGIESAND SQL -- A SHORT TUTORIAL

COPYRIGHTED (AMJAD UMAR) 3-3

� Manage logical views of data so that different users can access and manipulate the data without
having to know the physical representation of data

� Manage concurrent access to data by multiple users, enforcing logical isolation of transactions
� Enforce security to allow access to authorized users only
� Provide integrity controls and backup/recovery of a database.

These functions of a DBMS are described later. As shown in Figure 3-1, a typical database
management system (DBMS) uses a database dictionary/directory to store the data views, data
relationships, data formats and security restrictions; database logs to record the activities of
transactions; and lock tables to allow synchronous concurrent access to the database by several users.

Database
Manager

User
Interface

Programs

Tools
Report writers
Spreadsheets
Others

DML: Data
Manipulation
Language

DDL: Data
Definition
Language Administrative

Support

User
Database

DDL

DML

DML

DML

Figure 3-1: Database Conceptual View

3.2.3 Data Models and Categories of DBMS.

A data model is a conceptual representation of data that does not include many of the details of how
the data is physically stored. Database management systems have traditionally supported the following
data models (see Figure 3-2):

� Hierarchical: the data model supports one to many relationships (i.e. each record has only one
parent). The DBMSs which are based on this data model are called hierarchical DBMSs. IBM's
IMS is an example of a hierarchical DBMS.

� Network: Many to many relationships among logical data records are supported. Example of a
network database management system is Cullinets's IDMS (currently supported by Computer
Associates).

� Relational: the data is viewed as tables (relations). Examples of relational DBMS are IBM's DB2,
Oracle’s RDBMS, and Microsoft’s Access.

Two other data models gained importance since the early 1980s -- Entity-Relationship-Attribute (ERA)
and Semantic data models. In the ERA data model, the data is viewed in terms of entities (objects),
attributes of entities and relationships between the entities. This model is used to build a conceptual
view of data in an organization (called logical data model). Semantic data model is an extension of the
ERA model. The main difference is that the relationships carry meanings and the objects can inherit
properties from other objects. "Object-oriented databases", discussed in section 3.6, use the semantic
data model for storage and retrieval of objects and rules for complex engineering, business and expert
systems applications. Other data models such as dimensional data models are used in specialized
application areas such as data warehouses (see the chapter on data warehouses and data mining for a
discussion of dimensional models)

CHAPTER THREE: DATABASE TECHNOLOGIESAND SQL -- A SHORT TUTORIAL

COPYRIGHTED (AMJAD UMAR) 3-4

Although database management systems can be categorized in a wide variety of ways, the
categorization by data models is the most common. The network and hierarchical DBMS, not
discussed in this tutorial, are older systems (these DBMSs flourished in the 70s). We will concentrate
more on the relational and object-oriented DBMSs.

Department

Courses Faculty

Department

Courses Faculty

Students Department

Courses Faculty

Students

a: Hierarchical View b: Hierarchical View c: Relational View

Figure 3-2: Common Data Models

3.2.4 Data View Support

A DBMS allows different users to view the same data differently. For example, information about an
employee can be viewed differently by different users. The term schema is used in database literature
to represent a data view. In a DBMS, schema exist at three levels: internal, conceptual and external
(see Figure 3-3). The internal schema shows the physical format (e.g., linked list) in which the data are
stored on a storage medium. The conceptual schema: shows the logical layout and the relationships
between data records of a database (it is also referred to as the logical data model). Database
management systems have traditionally supported the conceptual schemas based on the hierarchical,
network and relational data models. An external schema, also called a .subschema:, shows a user
view of data. This view can be hierarchical, network, relational or object-oriented. In most cases, the
external schema is a subset of the conceptual schema. However, relational views can be created from
a hierarchical and/or network conceptual views.

 Internal Schema
 (Storage View)

 Conceptual Schema
 (Community User View)

External
Schema1

User1

External
Schema3

External
Schema2

User2

Figure 3-3: Schemas (Views) in a Database Environment

CHAPTER THREE: DATABASE TECHNOLOGIESAND SQL -- A SHORT TUTORIAL

COPYRIGHTED (AMJAD UMAR) 3-5

3.2.5 Data Definition Facilities

Data definition facilities allow creation of databases. A Data Definition Language (DDL) is used to
define the data formats and data relationships. DDL allows data definitions at the conceptual as well as
external schema levels. In addition, security and authority information is defined. DDLs can be
interactive commands or batch programs. Results of DDL commands are stored in the database
dictionary. In many corporations, a database administrator controls the data definition facilities for
corporate-wide views, access rights, and enforcement of standards.

3.2.6 Data Manipulation Facilities

A.Data Manipulation Language (DML) allows a user to access, manipulate and modify the database.
The power and capability of DMLs depends on the underlying DBMS. Most of the modern DMLs, such
as SQL, support ad hoc queries which select information and display answers on demand. DML
statements may be embedded in programs written programming languages such as C, C++, Java and
Cobol. A DML may support report generators which produce reports with headings on special forms
with appropriate printer controls. Some specialized packages such as spreadsheets, simulation
packages and expert system shells may provide interfaces with database DMLs. For example, the
Lotus Data Lens allows Lotus-123 spreadsheets to access relational databases through SQL. In
addition, special features, such as graphics, can be built around a DML.

3.2.7 Operational Facilities

The operational facilities of a DBMS provide security, integrity and backup/recovery of a database. This
includes authentication, audit trails, data consistency (the data must correctly reflect the state of a
system even after failures), and concurrency (the data must be simultaneously accessible by different
users). Operational facilities of a large, centralized DBMS must be comprehensive enough to allow
simultaneous access of hundreds of users to large centralized databases. On the other hand, extensive
operational facilities may not be needed for single user microcomputer databases.

Different commercial DBMSs provide different levels of data views, data definitions, data manipulation,
and operational support. An area of active work is support of databases over a network where a
database can be accessed by a wide range of programs and users across a network (see Figure 3-4).
In such cases, ODBC/JDBC (Open Database Connectivity/Java Database Connectivity) software is
typically used for access of databases from remote clients (programs or user interafces) ODBC/JDBC
are discussed in the “Distributed Data and Transaction Management Chapter”.

CHAPTER THREE: DATABASE TECHNOLOGIESAND SQL -- A SHORT TUTORIAL

COPYRIGHTED (AMJAD UMAR) 3-6

Database
Manager

User
Interface

Programs

File
Manager

User
Database

User
Interface

User
Interface

LogsDictionary
. Data formats

,Data relationships
. Security

User
Interface

Program

Network

Figure 3-4: Database Management Over a Network

3.3 Overview of Relational Databases

The relational database technology, introduced by E.F. Codd [Codd 1970] at IBM, views all data as
tables; all database operations are on tables; and all outputs produced are also tables. A relational
database is a collection of tables. Figure 3-5 shows a relational database which consists of two tables:
EMPLOYEE and OFFICE. The following terms are used in relational DBMSs (RDBMSs):

� A relation is a table in which each row is unique. In addition, a relation must have a fixed number of
columns. A table which satisfies these two properties is known to be in the "First Normal Form".
The EMPLOYEE and OFFICE tables represent two relations in First Normal Form.

� A tuple of a relation is synonmous to a row in a table. For example, the EMPLOYEE relation has 4
tuples.

� An attribute of a relation is a table column. For example, the OFFICE relation has 3 attributes:
Location, Manager and Phone.

� The degree of a relation represents the number of attributes in a table. For example, the degree of
OFFICE relation is 3.

� The domain of an attribute represents the range of values for an attribute. For example, the domain
for the age attribute is 0 to, say, 120 years.

CHAPTER THREE: DATABASE TECHNOLOGIESAND SQL -- A SHORT TUTORIAL

COPYRIGHTED (AMJAD UMAR) 3-7

Name Age Salary

(K)
Location

Joe 35 42 NY
Pat 29 60 LA
Bruce 25 42 Chicago
Sam 40 75 NY

Manag
er

Phone Location

Donna 555-1000 NY
Roger 555-1111 LA
Dave 555-2222 Chicago

Figure 3-5: Relational Tables Employee and Office

 The relational DBMSs allow a user to access information from the database with only three basic
operations:

� Selection
� Projection
� Join

Selection chooses rows of a table based on a criteria. For example, selection on EMPLOYEE for Age >
30 produces the rows for Joe and Sam. Projection chooses columns of a table based on a criteria. For
example, projection on EMPLOYEE for the Name column lists the names: Joe, Pat, Bruce, and Sam.
Join combines two different tables on a common attribute. For example, join of the EMPLOYEE and
OFFICE tables on LOCATION is shown in Figure 3-6 . Theoretically, a join between two relations r1
and r2 on the joining condition r1.a1 = r2.a2 involves the following steps (a1 and a2 represent two
attributes):

� Form product of r1 and r2 to produce r3'. In a product (cartesian), every tuple of r1 is concatenated
with every tuple of r2 so that r3' has m x n tuples if r1 has m tuples and r2 has n tuples.

� Perform a selection on r3' where the joining attributes a1 and a2 are the same. This produces r3",
known as :hp1.equijoin:ehp1..

� Eliminate duplicate attributes from r3" with a projection. This produces r3, known as :hp1.natural
join, :ehp1. or just a join. r3 is the normal result of a join.

Joins are implemented differently by different DBMSs for efficiency. In addition to the natural joins,
other forms of joins are supported in relational DBMSs. Examples are the theta and outer joins. In theta
joins, also known as non-equijoins, the joining condition is r1.a1 <> r2.a2. The outer joins retrieve rows
that may not meet the join conditions. This allows retrieval of data that may be lost (e.g., if joining
columns have null values).

Figure 3-6: Join of Employee and Office Tables

Name Age Location Manager Phone Location

Joe 35 NY Donna 555-1000 NY

Sam 40 75 Donna 555-1000 NY

In addition to the basic operations of selection, projection and join, relational DBMSs allow unions,
differences and intersections. A union concatenates the tuples from r1 with r2 and produce r3.
Duplicate relations are eliminated from r3 as a result of union. In addition, r1 and r2 must have same
number of attributes and attributes must be from same domain (union compatible). After a difference
between r1 and r2, the result r3 has tuples which occur in r1 and not in r2. After an intersection

CHAPTER THREE: DATABASE TECHNOLOGIESAND SQL -- A SHORT TUTORIAL

COPYRIGHTED (AMJAD UMAR) 3-8

between r1 and r2, the result r3 has tuples that are common in r1 and r2. Unions, intersection,
differences, and products can be performed with selection, projection, and join.

In addition to these operations, some manipulation operations are introduced specifically for distributed
systems. For example, the semi-join is introduced to minimize the internode traffic while performing a
join of two remotely located tables [Bernstein 1981].

Relational DBMS's provide a number of attractive features:

� The relational model is simple and easy to understand.
� Desired data can be reached through a series of joins. If two tables do not have a joining column,

then an "index table" can be created to facilitate joins.
� A standard query language, SQL, is used by all relational DBMS.
� Many commercial relational DBMSs are currently available for mainframes, minicomputers and

workstations. Due to the popularity of relational DBMSs and SQL, many tools in business and
engineering are developing interfaces to access the relational tables. This is leading to a
corporate-wide database concept illustrated in Fig. E.2.

� The relational model supports "data independence" (i.e. the queries are non-procedural and do not
have to know the physical data organization such as indexes and pointers).

� Relational database searches are based on data values and not on the position of data in the
database. This makes data access easier.

� Relational databases and SQL are used in almost all of the currently available distributed database
management systems (DDBMS).

However, relational DBMSs have a number of limitations:

� Relationships between tables cannot be modeled directly; each relationship is implicitly modeled by
the inclusion of "foreign keys" as attributes. Simply stated, a foreign key enables a join between
two relations. For example, the Employee-ID in the OFFICE table in Fig. E.6 is a foreign key.

� It is very difficult to represent complex design information in relational database model because
relational tables do not lend themselves easily to complex data relationships, design versions and
views.

� The user may be responsible for the semantic integrity of a query and completeness of an update.
"Referential integrity", which ensures that all tables are modified correctly when a tuple is inserted
or deleted, is not implemented in all relational DBMSs.

� The performance of queries depends on an "optimizer" which knows the internal structure of a
database. It is difficult to know how well an optimizer is doing its job or if it is doing it at all.

3.4 SQL -- A Quick Overview

Structured Query Language (SQL) is the standard query language for relational databases. SQL,
initially also referred to as "SEQUEL", was developed at the IBM San Jose Research Laboratories in
1974. It provides interactive ad hoc queries as well as program interfaces in C, C++, Java, Cobol,
Fortran, ADA and PL1. The SQL language consists of a set of facilities for defining, manipulating, and
controlling data in a relational database. Basically, SQL is at the core of relational da.tabase
management systems (see Figure 3-7).

CHAPTER THREE: DATABASE TECHNOLOGIESAND SQL -- A SHORT TUTORIAL

COPYRIGHTED (AMJAD UMAR) 3-9

Relational
Database
Manager

User
Interface

Programs

Tools
Report writers
Spreadsheets
Others

Administrative
Support

User
Database

SQL

SQL

SQL

SQL

Figure 3-7: SQL is at the Core of Relational Databases

3.4.1 Data Definition

SQL data definition language (DDL) is used to create tables by using a CREATE TABLE command.
The following two SQL statements are used to create a parts and a customers table:

CREATE TABLE parts (part_no char (4), part_name char(5)), price numeric(5))

CREATE TABLE customers (cust_name char(30) not null, address char(30) not null,
cust_id char(12) unique not null, part_no char(4))

3.4.2 Data Retrieval

The main power of SQL lies in its data manipulation facilities. There are four basic SQL operations:
SELECT, UPDATE, INSERT, and DELETE. All data retrievals are invoked by a SELECT command,
which has the following general syntax:

 SELECT <a1,a2,a3,...,an> FROM <t1,t2,...,tm> WHERE <conditions>;

 where a1, a2,,, an are the attributes; t1, t2,, tm, are the tables; and the conditions, if specified, indicate
the retrieval criteria. Conditions are specified by the "attribute op value" pairs, which can be combined
through logical operators such as AND, OR, NOT. An op indicates predicates such as =, <, >, <=, >=,
and <>. Examples of conditions are "age > 30", "age < 30 AND salary > 50K", etc. An SQL statement is
terminated either by a ";" or by another SQL command. The SQL statements can be coded in upper or
lower case. We will use uppercase letters to indicate the keywords in SQL.

The selection, projection and join operations of relational databases are performed by the SELECT
statement. For example, the following statement performs relational selection (i.e., shows all columns):

 SELECT * FROM t1 WHERE attribute op value

 For example, " SELECT * FROM parts WHERE price > 100; " would display the rows of the parts
table for prices more than 100. The statement, " SELECT * FROM parts; " would display the entire
table. The projection and selection can be combined by using the following statement:

 SELECT a1, a2,...,an FROM t1 WHERE attribute op value

 For example, " SELECT part_no, part_name FROM parts WHERE price > 100 " would display the
part_no and part_name from the parts table for prices more than 100. The joins are also performed by
the select statement. The following statement causes an equijoin, where the joining condition is equality
and the result include duplicates:

SELECT t1.*, t2.* FROM t1, t2 WHERE t1.a1 = t2.a2 op value;

CHAPTER THREE: DATABASE TECHNOLOGIESAND SQL -- A SHORT TUTORIAL

COPYRIGHTED (AMJAD UMAR) 3-10

The following statement invokes a natural join, an equijoin, which eliminates duplicates:

 SELECT a1, a2, a3,...,an FROM t1, t2 WHERE t1.a1 = t2.a2 op value;

For example, " SELECT part_no, part-price, cust_name FROM parts, customers WHERE
customer.part_no = parts_no " lists the customer names who have ordered certain parts. Additional
conditions can be included in joins. For example, " SELECT part-price, cust_name FROM parts,
customers WHERE part_no.customer = part_no.parts and part-price >200 " would list the names of the
customers who have ordered parts which cost more than $200. A product between two tables is
formed by ignoring the joining condition. For example, the following statement forms a product between
the parts and customers tables: " SELECT * FROM parts, customers ". Theta joins are performed by
the following statement:

 SELECT a1, a2,...,an FROM t1, t2 WHERE a1.t1 <> a2.t1 op value

More than two tables can be joined in a single statement:

 SELECT a1, a2,...,an FROM t1, t2,...,tm WHERE condition1 AND condition2 AND condition3;

A table can be joined with itself. Aliases can be used to avoid confusion. For example, the following
statement produces a list of salesmen in the same city: " SELECT first.name, second.name FROM
salesperson first = salesperson second WHERE first.city = second.city AND first.ss# <> second.ss# ".
In this statement, first and second are assigned as aliases. You can build complex queries by nesting
queries within other queries by using the following format:

 SELECT a1, a2,...,an FROM t1 WHERE an IN (SELECT a5,a6,...,am FROM t2 WHERE am
op value)

For example, the statement "SELECT part_no, part_name FROM parts WHERE part_no in (SELECT
cust_name FROM customers WHERE city='Detroit')" would display part numbers and names ordered
by the customers who live in Detroit. The innermost query is executed first; the outer query operates on
the results of the inner query.

SQL provides a powerful set of built-in functions such as ORDER, AVG, SUM, COUNT, and GROUP
BY. The statement " SELECT part_no, part_name FROM parts ORDER BY part_no; " lists the part_no
and part_name, sorted by part_no. The statement " SELECT AVG (price), MIN(price), MAX(price),
SUM (price), COUNT DISTINCT, COUNT (*) FROM parts; " lists the average, minimum, maximum,
and sum of prices. This statement will also list the distinct and total count of records in the parts table.
The statement " SELECT AVG(salary) FROM employees GROUP BY title; " will produce the following
display:

 Title Avg(salary) secretary 1300 programmer 2500 manager 3400

The MINUS produces a difference (this operator is supported by some DBMSs). For example, "
SELECT * FROM parts MINUS (SELECT * FROM parts WHERE price <1000) " produces the list of
parts with price greater than or equal to 1000.

The predicates, used in the where clause of the select statement, provide many options, such as the
following:

Comparison: =, <, >, <=, >= , <>

BETWEEN/NOT BETWEEN: An example is "where price between 5 and 20;" * IN/NOT IN:
example is "where price not in (5, 7, 10);"

LIKE/NOT LIKE: these are used for pattern recognition. A "_" is used for single characters, and
"%" is used for 0 to n char length. For example,"select cust_name from customers where
cust_name like 'B%';" displays the names of all customers whose name starts with a B.
Like/not like predicates can be used with character or graphic data.

NULL: An example is "where part_no is null;"

CHAPTER THREE: DATABASE TECHNOLOGIESAND SQL -- A SHORT TUTORIAL

COPYRIGHTED (AMJAD UMAR) 3-11

3.4.3 Data Modification

SQL data modification statements allow insertion, deletion and update of data in tables through the
INSERT, DELETE and UPDATE statements. Here are some (hopefully) self explanatory examples:

INSERT INTO parts(part_no, part_name, price) (xy22, rods, 100);

INSERT INTO parts(part_no, part_name, price) (xy22, rods, null);

INSERT INTO parts-high(part_no, part_name, price) (select part_no, part_name, price FROM
parts WHERE price >1000);

DELETE FROM parts where part_no = xy20;

UPDATE PARTS set price=120 where part_no=xy22;

3.4.4 View Support

Views may be used to operate on portions of tables. For example, " CREATE VIEW salesperson AS
SELECT name, number FROM employees WHERE job='salesperson'; " creates a portion of the
employees table populated with salesmen. The " DROP VIEW salesperson; " deletes the view. One
view can be created to contain columns from several tables. Views are treated as tables in SQL and
can be used in any of the SQL statements. For example, views can be created from joins and can be
joined with tables or with other views. Views are created temporarily; the operations are performed on
actual tables. Thus updates are performed on the tables from which the views are created. Views can
be used to restrict user access and handle subqueries for intermediate tables. You may create a table
for more permanent operations by using statements such as: " CREATE TABLE temp1 (name, part#,
price) AS (SELECT name, part#, price FROM suppliers WHERE price > = 1000); ".

3.4.5 Administrative Facilities

SQL provides two data control statements for administrators:

GRANT access-type ON tablename TO id;

REVOKE access-type FROM id;

where access-type specifies: all privileges, update, select and insert. In addition, programmers can
issue "commit work" command to make changes available to others. Before the commit command,
only the person entering changes sees the changes. The "rollback work" command can be used to
undo changes before commit. You can modify table structure (add columns, change column width) by
using the following statements (these statements are not supported by ANSI SQL):

ALTER TABLE tablename ADD column-name datatype;

ALTER TABLE tablename MODIFY column-name datatype new-width;

3.4.6 Embedded SQL

SQL statements can be embedded in host programs written in several languages such as C, C++,
Java, Cobol, Fortran, and PL1. The SQL statements in programs are embedded by using the EXEC
SQL statements in a program:

EXEC SQL sql statements

Two unique problems are concerned with embedded SQL: connecting the SQL variables with
programming language (host) variables and handling of multiple rows returned from SQL statements.

CHAPTER THREE: DATABASE TECHNOLOGIESAND SQL -- A SHORT TUTORIAL

COPYRIGHTED (AMJAD UMAR) 3-12

Connection with host variables is established by reading the selected attributes INTO a set of host
program variables:

 EXEC SQL SELECT a1, a2,,,, an INTO :p1, :p2,,,,,:pn FROM t1 WHERE condition;

The host variables p1, p2,,, pn are indicated by a ":". For example, the statement " EXEC SQL SELECT
part_no part_name INTO :pnumber, :pname FROM parts " will store the part_number and part_name
attributes from table parts into host variables pnumber and pname.

A "cursor" is used to handle multiple rows returned from SQL. The problem is that the traditional
procedural languages are record oriented; they process one record at a time. However, SQL may
return many rows as the result of a single embedded select statement. A cursor is first declared for an
SQL statement to be executed. It is then opened in a manner similar to a file open. The program then
issues FETCH statements to retrieve the rows returned. SQLCODE, a flag, is checked to see if any
rows are left to be retrieved. The following code is an example:

 EXEC SQL DECLARE cs CURSOR FOR <SQL statements>

 EXEC SQL OPEN cs

 EXEC SQL FETCH cs INTO <host variables>

 CHECK SQLCODE for end of fetch

Figure 3-8 shows the sample pseudo C/C++ code which illustrates how embedded SQL can be used
to extract information from the parts table defined by the shown CREATE command. The sample code
has three segments. The first segment shows how the host variables are defined by using an int
statement. The inclusion of SQLCA brings many of the SQL flags and variables (e.g., the SQLCODE
which shows return codes) into the program code. The second segment of the code shows how the
information for part number 75567 is accessed and printed. The third part of the code shows how
multiple rows are processed by using the cursor statement. The reader should understand that the
code shown here is given for illustrative purposes only. Differences exist between different languages
and vendors.

CHAPTER THREE: DATABASE TECHNOLOGIESAND SQL -- A SHORT TUTORIAL

COPYRIGHTED (AMJAD UMAR) 3-13

Table definition:
CREATE TABLE parts (part_no numeric (4), part_name char(5)), part-

price numeric(5)) ;

Sample code to Extract and display information from parts table;
Include SQLCA

Int p-number, p-price;

…

Exec SQL select part-no, part-price into :p-number, p-price from parts where
part-no =75567;

Print (p-number, p-price);

 …..

Exec SQL cursor CS

 select part-no, part-price into where part-price >200;

Exec SQL select part-no, part-price into :p-number, p-price from parts where
part-price =200;

Exec SQL open CS;

Do {Exec SQL Fetch CS into :p-number, p-price; } while sqlcode =0;

Exec SQL close CS;

Figure 3-8: Sample Embedded SQL Code

3.4.7 Performance

SQL query optimization is the responsibility of DBMS which parses the query and then executes it in an
appropriate manner. Clever techniques which rely on internal organization are not recommended. A
user can create an index for fast access. For example, if the parts table needs to be accessed by
part_no frequently, then an index on this column will speed up the performance. The following
statements create and drop an index:

CREATE INDEX indexname ON tablename (column-name); DROP INDEX indexname ON
tablename;

Many indices can be created on one table. The user does not specify when and how the index will be
used. SQL determines when to use an index (recall that a SELECT statement does not include any
reference to an index). An index is not used if a WHERE clause is absent in queries. The use of the
index to satisfy a query is decided by the query optimizer.

Joins are the major source of performance problem. For an m row table join with an n table join:, there
can potentially be mxn operations. Over the years, local optimizations for joins work fine, however,
distributed joins can create major performance problems. In addition, you should minimize duplicate
values to avoid too many updates.

CHAPTER THREE: DATABASE TECHNOLOGIESAND SQL -- A SHORT TUTORIAL

COPYRIGHTED (AMJAD UMAR) 3-14

3.4.8 SQL Products

At present, SQL is supported on a very large number of relational as well as non-relational database
products. Here are examples of the major DBMSs which support SQL:

� SQL/DS, part of DB2, IBM's major relational DBMS
� Oracle from Oracle, Inc.
� Informix SQL from Informix Corp.
� Sybase from Sybase Corp. DbaseIV from Ashton Tate.
� SQL Access from Microsoft

In addition to the relational DBMS, SQL interfaces have been developed to read information from non-
relational databases. Example is the EDA/SQL product from Information Builders, Inc., which uses SQL
to retrieve information from more than 30 data sources such as ADABAS, IMS, VSAM, IDMS/R, Model
204, Supra, TOTAL, and OS/400 DB. SQL is also generated from a variety of tools to provide access to
relational databases. Here are some examples:

� Data Lense which provides access to SQL databases from spreadsheets (e.g., the Lotus Data
Lens from Lotus Corp).

� Executive information systems which access data through SQL (e.g., the Data Access Language
for Command Center from Pilot Software).

� Expert systems which use SQL to access relational databases (e.g., the SQL interface for ART/IM
System from Inference Corp.).

� CASE (computer aided software engineering) tools from Oracle, which are built around relational
databases.

3.4.9 Strengths and Weaknesses

SQL has many strengths:

� SQL is easy to learn and use. It is based on relational algebra and allows a user to perform all
retrievals by using a single verb (SELECT).

� SQL is the standard query language for all relational databases. An ANSI SQL standard has been
published.

� At present, almost all relational database vendors support ANSI SQL. Due to its popularity, an
application using ANSI SQL is portable across different database vendors running on different
computer systems under different operating systems.

� SQL is used as the global query language for distributed heterogeneous databases. A user issues
an SQL call which is translated to other data manipulation language, if needed.

� Due to the popularity of SQL, many tools and aids are being developed around SQL.

A practical limitation of SQL is that SQL queries can become quite complex when information from
many tables is needed requiring many joins and nested queries. In addition, ad hoc SQL queries from
inexperienced users can cause serious system performance problems. For example, a user may
inadvertantly issue a join between 4 to 5 tables, causing thousands of messages in the system. E.F.
Codd has discussed many weaknesses of SQL in his papers entitled "Fatal Flaws in SQL" <Codd
1988>. The main flaws discussed by Codd are as follows:

� SQL allows duplicate rows in tables,
� SQL supports an inadequately defined nesting of queries within queries, and
� SQL's support of third and fourth value logic (the logic that evaluates three and four conditions) is

not adequate.

CHAPTER THREE: DATABASE TECHNOLOGIESAND SQL -- A SHORT TUTORIAL

COPYRIGHTED (AMJAD UMAR) 3-15

Suggested Readings. We have highlighted the main features of SQL. For a quick tutorial on SQL, refer
to [Dowgiallo 1988]. SQL is an extensive query language with many features that are beyond the scope
of this book. The following books are recommended for additional details:

� Date, D.J., "A Guide to The SQL Standard", Addison-Wesley, 1987
� Hursch, C. and Hursch, J., "SQL - The Structured Query Language", Tab Books, 1988
� Date, C.J., "A Guide to DB2", Addison Wesley, 1984
� Elmasri et al, “Fundamentals of database systems”, Addison-Wesley, 2001

3.5 SQL -- A Closer Look

In this section, we will look into SQL in more depth. There are certain differences in SQL as used by
different DBMS vendors e.g., Oracle, DB2 by IBM or SQL Server by Microsoft etc. Here we will mostly
discuss those SQL features that are used by almost all the platforms. Some exceptions are data types
and some part of the ‘data administration’ portion. In these cases, we have followed Oracle notation.

SQL can be used both for data definition as well as data manipulation.

3.5.1 Data Definition

3.5.1.1 Create Relations (tables)

Tables or relations are created by CREATE TABLE command i.e. generically the tables are created as

CREATE TABLE table_name

(col_1 data_type (data_size) constraint1,…

col_2 data_type (data_size) constraint1,…

……)

e.g.,

Create table customers

CREATE TABLE customers

(cust_ID number(6) not null,

first_name varchar2(20) not null,

last_name varchar2(20) not null,

city varchar2(20),

state char(2),

zip char(5),

date_register date);

Create another table orders

CREATE TABLE orders

(orderID number(5) not null,

cust_ID number (6),

CHAPTER THREE: DATABASE TECHNOLOGIESAND SQL -- A SHORT TUTORIAL

COPYRIGHTED (AMJAD UMAR) 3-16

Order_date date,

Order_val number (6));

the above statements will create Customers and orders tables having attributes(columns) mentioned in
the statements. For each attribute, data type and size is mentioned. Data types may be different for
different DBMS. For customers table, Cust_ID, first_name and last_name are declared not null. It
means that these attributes can’t have null values. We can also declare primary key, foreign keys and
other constraints in create table command as we did for orders table. These issues will be discussed in
some detail later in this section.

3.5.1.2 Drop Table

A table can be removed using command

DROP TABLE table_name;

Example:

DROP TABLE customers;

This command will not only delete all the tuples but will also remove the table structure. This command
cannot be rolled back or undone.

The commands DELETE FROM TABLE and TRUNCATE TABLE are discussed under data
manipulation.

3.5.1.3 Alter table

Table can be altered anytime after its creation. The change may be

• Addition of new columns

ALTER TABLE customers ADD (street char(15));

This statement will add a new column ‘street’ in the table customers

• Removing a Column

ALTER TABLE customers DROP COLUMN street;

This statement will remove street column from the customers table.

• Changing the data sizes etc.

ALTER TABLE customers MODIFY (last_name varchar(25));

This statement will change the data size of the column ‘last_name’. It is preferable not to reduce the
data size. This may result in data loss.

Adding, modifying or removing constraints will be discussed later in this section

3.5.1.4 Establishing Constraints

Following are the methods for adding constraints like primary keys, foreign keys etc.

CHAPTER THREE: DATABASE TECHNOLOGIESAND SQL -- A SHORT TUTORIAL

COPYRIGHTED (AMJAD UMAR) 3-17

Data type and size

It has already been mentioned as part of create table command

3.5.1.4.1 Primary key

Primary key for a table can be declared with in create table command i.e.,

CREATE TABLE customers

(OrderID

cust_ID number(6) not null PRIMARY KEY,

first_name varchar2(20) not null,

last_name varchar2(20) not null,

city varchar2(20),

state char(2),

zip char(5),

date_register date);

or if the table has a composite primary key we can create the primary key as follows:

CREATE TABLE customers

(cust_ID number(6) not null,

first_name varchar2(20) not null,

last_name varchar2(20) not null,

city varchar2(20),

state char(2),

zip char(5),

date_register date,

PRIMARY KEY(cust_ID, first_name, last_name));

Primary key can also be declared after table has been created using alter table command i.e.,

ALTER TABLE customers ADD CONSTRAINT cust_PK PRIMARY KEY (cust_ID)

Where cust_PK is the constraint name.

3.5.1.4.2 Foreign Key (for referential integrity)

Foreign keys can also be added using CREATE TABLE or ALTER TABLE commands

CREATE TABLE orders

(orderID number(5) ,

CHAPTER THREE: DATABASE TECHNOLOGIESAND SQL -- A SHORT TUTORIAL

COPYRIGHTED (AMJAD UMAR) 3-18

cust_ID number (6),

Order_date date,

Order_val number (6),

FOREIGN KEY (cust_ID) REFERENCES customers(cust_ID));

The above statement shows that in the table orders, the cust_ID attribute is a foreign key and it refers
to the cust_ID attribute in customers table. This method of creating foreign keys is more useful if we are
dealing with composite keys. If the primary key of the table that is being referred to is a single attribute
(in our case, column cust_ID for orders table) then foreign keys can be created as follows:

CREATE TABLE orders

(orderID number(5) ,

cust_ID number (6) REFERENCES customers,

Order_date date,

order_val number (6));

In the above statement, we didn’t mentioned column name for the referenced table (customers table)
because the name of the foreign key attribute in both the tables is the same. In case the name differs
then we have to explicitly mention column name.

Note: We can create multiple foreign keys from a single CREATE TABLE statement

foreign keys can also be created using ALTER TABLE command as

ALTER TABLE orders ADD CONSTRAINT cust_ord_FK FOREIGN KEY (Cust_ID) REFERENCES
customers (Cust_ID);

Some other constraints

• CHECK

• DEFAULT

• UNIQUE

Each of the above mentioned constraints can be applied through CREATE TABLE or ALTER TABLE
statements.

3.5.1.4.3 CHECK

This constraint is applied to a particular attribute to limit the range of its values e.g., there is a ‘gender’
attribute in a table. The only possible values are ‘M’ or ‘F’. so the constraint can be applied as

CHECK gender IN (‘M’ , ‘F’)

CHECK orderID IN (orderID BETWEEN 1 AND 1000)

CREATE TABLE table_name

(column definitions,

CONSTRAINT chk_col CHECK colum_name IN (specific values or range of values));

CHAPTER THREE: DATABASE TECHNOLOGIESAND SQL -- A SHORT TUTORIAL

COPYRIGHTED (AMJAD UMAR) 3-19

 In the above generic statement, column definitions means definition of attributes and ‘chk_col’ is user
defined constraint name.

Or

CREATE TABLE table_name

(col1 data type,

col2 data type,

col3 data type CHECK IN (specific values or range of values));

similarly by using ALTER TABLE command,

ALTER TABLE table_name ADD CONSTRAINT chk_col1 CHECK attribute_name IN (specific values
or range of values)

Range of the values can be specified as

CHECK order_val IN (order_val BETWEEN 0 AND 500)

This means that the order_val for a particular order should be between 0 and 500 dollars.

3.5.1.4.4 DEFAULT

This constraint will assign a default value to the attribute when a new record is inserted and no value is
assigned to the subject attribute e.g.,

DEFAULT value

e.g.,

CREATE TABLE orders

(orderID number(5) ,

cust_ID number (6),

Order_date date,

Order_val number (6) DEFAULT 0);

i.e., The default order value is zero.

3.5.1.4.5 UNIQUE
Unique constraint means that the attribute values in question be unique in the table.

CREATE TABLE customers

(cust_ID number(6) not null,

first_name varchar2(20) not null,

last_name varchar2(20) not null,

city varchar2(20),

state char(2),

CHAPTER THREE: DATABASE TECHNOLOGIESAND SQL -- A SHORT TUTORIAL

COPYRIGHTED (AMJAD UMAR) 3-20

zip char(5),

date_register date

CONSTRAINT unq_name UNIQUE(first_name, last_name));

or

ALTER TABLE customers ADD CONSTRAINT unq_name UNIQUE (first_name, last_name)

in the above examples, customer name is defined as unique in the table customers.

3.5.1.4.6 Dropping Constraints
Constraints can be removed by using ALTER TABLE command i.e.,

ALTER TABLE table_name DROP constraint_name;

In order to get the list of all the constraints pertaining to a table, developed by a particular user etc.,
DBMS vendors normally use their own specific commands and statements.

3.5.1.5 Indexing

Indexing is used for better querying performance. When we create primary keys or unique constraints,
unique indexes on those attributes are automatically created. We can also create indexes on non-key
attributes. Suppose we want to create an index for our customers table on 'last_name' attribute then

CREATE INDEX cust_ind1 on customers (last_name);

Where cust_ind1 is the user-defined name of the index file we have created.

We can also create index on multiple attributes

CREATE INDEX cust_ind2 on customers (last_name, zip)

Indexing capabilities vary from one DBMS platform to another. For Oracle 8I, we can include as many
as 16 attributes in one indexes.

Unique index can be created by adding 'UNIQUE' clause in the create statement.

CREATE UNIQUE INDEX emp_cust_ind1 ON employees (empID);

In the above example, a unique index is created for the table Employees on empID attribute.

3.5.2 Data Manipulation

3.5.2.1 Data Insertion

Data can be inserted in a table by

INSERT INTO table_name VALUES (value1, value2,....);

or

INSERT INTO table_name (attribute1, attribute2,...) VALUES (value1, value2,....);

Examples:

INSERT INTO orders VALUES (1, 10, ’31-aug-200’, 100);

CHAPTER THREE: DATABASE TECHNOLOGIESAND SQL -- A SHORT TUTORIAL

COPYRIGHTED (AMJAD UMAR) 3-21

If we don't specify particular attributes, we have to mention all the data values in order. if we don't have
a value for some attributes, NULL can be specified.

INSERT INTO customers (cust_ID, first_name, last_name, date_register) VALUES (100, 'isaac',
'newton', '01-jun-2001');

(Insert a new record with data values specified only for 4 attributes. Values for rest of the attributes will
be NULL. For the above case, we need to follow the order of attributes as they appear in the table but
we must specify values for 'not null' and primary key attributes)

3.5.2.1.1 Data insertion for customers table
insert into customers values(2, 'kamran', 'khalid', 'philadelphia', 'PA', '09941', '30-may-1999');

insert into customers values(3, 'tom', 'tigar', 'philadelphia', 'PA', '09941', '04-june-1999');

insert into customers values(4, 'nancy', 'roberts', 'piscataway', 'NJ', '08846', '01-january-2000');

insert into customers values(5, 'micheal', 'fox', 'new york', 'NY', '07564', '14-feb-2000');

Customers Table after Data Insertion

Cust_ID First_name Last_name city state zip Date_register
1 isaac newton NULL NULL NULL 01-Jun-2001
2 kamran khalid philadelphia PA 09941 30-may-1999
3 tom tigar philadelphia PA 09941 04-june-1999
4 nancy roberts piscataway NJ 08846 01-jan-2000
5 micheal fox new york NY 07564 14-feb-2000

3.5.2.1.2 Data insertion in orders table
insert into orders values(12, 1, '20-jan-2001', 55);

insert into orders values(21, 2, '30-may-2001', 150);

insert into orders values(22, 2, '10-jun-2001', 50),

insert into orders values(31, 3, '03-mar-2000', 100);

insert into orders values(32, 3, '05-apr-2000', 90);

insert into orders values(41, 4, '15-jan-2001', 40);

insert into orders values(42, 4, '13-nov-2001', 145);

insert into orders values(43, 4, '18-dec-2001', 80);

Orders Table after Data Insertion

 OrderID Cust_ID Date_Order Order_val
12 01 20-jan-2001 55
21 02 30-may-2001 150
22 02 10-jun-2001 50
31 03 03-mar-2000 100
32 03 05-apr-2000 90
41 04 05-jan-2001 40
42 04 13-nov-2001 145
43 04 18-dec-2000 80

CHAPTER THREE: DATABASE TECHNOLOGIESAND SQL -- A SHORT TUTORIAL

COPYRIGHTED (AMJAD UMAR) 3-22

3.5.2.2 Querying Data

Data can be queried using SELECT statement. Generic SELECT statement is as follows:

 SELECT [DISTINCT] select_list
FROM table_names
[WHERE search_condition]
[GROUP BY group_by_expression]
[HAVING search_condition]
[ORDER BY order_expression [ASC | DESC]]

Simple select statements:

SELECT first_name AS FNAME, last_name AS LNAME FROM customers;

(Query all the customer names from the table. In this example, we have used AS clause to define
customized column title. This is just for representation purposes)

Result

FNAME LNAME

isaac newton

kamran khalid

micheal fox

nancy roberts

tom tigar

SELECT * FROM customers;

(Select all the records with all the attributes in the table ‘customers’)

SELECT DISTINCT last_name FROM customers;

(Query unique customer last names from the table ‘customers’. In absence of DISTINCT clause the
query results may include repeated data as it appears in the table.)

3.5.2.2.1 Applying Conditions to Queries (Use of WHERE clause):

SELECT cust_id, last_name FROM customers WHERE state ='PA';

(query last names of all the customers from Pennsylvania)

Result

Cust_ID last_name

2 khalid

3 tigar

3.5.2.2.2 Conditions on strings (use of LIKE clause)

CHAPTER THREE: DATABASE TECHNOLOGIESAND SQL -- A SHORT TUTORIAL

COPYRIGHTED (AMJAD UMAR) 3-23

LIKE is used for string pattern matching. By using LIKE clause, we can apply conditions in more flexible
manner i.e., we can query data starting, ending or having a particular character or sub-string.

LIKE can be used with wild card characters. Some of them are as follows:

% Any string of zero or more characters WHERE LIKE ‘%mid_str%’

(strings having ‘mid_str’ , in the beginning, end
or middle)

_
(underscore)

Any single character WHERE LIKE ‘_ _end’

(strings ending with ‘end’ and having two
characters before that)

.

SELECT last_name FROM customers WHERE first_name LIKE ‘k%’ AND date_register BETWEEN
’01-JAN-1998’ AND ’31-dec-2000’;

(query last names of all the customers having first name that starts from ‘k’ and who got registered
between jan 1st 1998 and dec 31st 2000)

3.5.2.2.3 Aggregate Functions

Following are the aggregate functions in SQL i.e.,

COUNT(), SUM(), MAX(), MIN(), AVG()

In case of COUNT function, null values are also counted but if we declare

COUNT (DISTINCT expression) then null values are ignored

e.g.,

SELECT COUNT(state) FROM customers

Result : 4

There are only three states i.e., NY, NJ and PA mentioned in the customers table. Isaac Newton has
NULL value for state. That null value is also included in the result.

SELECT COUNT(DISTINCT state) FROM customers

Result: 3

3.5.2.2.4 Retrieving Data in Groups

GROUP BY clause helps in getting the results in groups. It is exclusively used with aggregate functions
i.e., min(), max(), sum(), count() and avg(). For instance, there is a table containing information about
sales at different stores of a company and we want to query the total sales at each store. In this case,
we can use sum(income) function with GROUP BY ‘individual store’. We can also group results by two
or more attributes.

Some examples:

SELECT state, COUNT(*) AS NUMofCUST from customers GROUP BY state;

(Query the number of customers from each state)

CHAPTER THREE: DATABASE TECHNOLOGIESAND SQL -- A SHORT TUTORIAL

COPYRIGHTED (AMJAD UMAR) 3-24

Result:

State NUMofCUST

NULL 1

NJ 1

NY 1

PA 2

SELECT C.cust_id, COUNT(*) AS Num, SUM(O.order_val) AS Amount FROM customers C, orders O
WHERE C.cust_ID = O.cust_ID GROUP BY C.cust_id;

(List down number of orders made by each customer along with the total sum of order value)

Result:

Cust_ID Num Amount

1 1 55

2 2 200

3 2 190

4 3 265

Grouping can be done by more than one attribute i.e.,

SELECT state, zip, COUNT(*) AS NUMofCUST from customers GROUP BY state, zip;

All the attributes that appear in the SELECT clause with the aggregate function must appear in the
GROUP BY clause e.g., in the above case, we can’t just group by state or zip.

3.5.2.2.5 Applying Conditions on the Groups (Use of HAVING clause)

Having is used to exclude unwanted groups in the query result. It can only be used with GROUP BY
and is applied to grouped data. The difference between WHERE and HAVING is that WHERE is used
to filter out the data before 'Grouping' and HAVING' clause is used to apply condition on grouped data
e.g.,

SELECT COUNT (*), state from customers WHERE last_name LIKE 'r%' GROUP BY state HAVING
COUNT (*) > 10;

(List the numbers of customers by state having names starting with 'r' and include only those groups
that have number of customers greater than 10)

3.5.2.2.6 Sorted Retrievals (use of ORDER BY clause)

Query results can be obtained sorted with respect to one or more attributes (more than one attribute
can be used for sorting in case there is room for multi-layered sorting) by using ORDER BY clause

SELECT first_name, last_name FROM customers ORDER BY last_name;

CHAPTER THREE: DATABASE TECHNOLOGIESAND SQL -- A SHORT TUTORIAL

COPYRIGHTED (AMJAD UMAR) 3-25

First_name last_name

Micheal fox

Kamran khalid

Isaac newton

Nancy roberts

Tom tigar

SELECT state, zip, COUNT(*) AS NUMofCUST from customers GROUP BY state, zip ORDER BY
state;

(group the result by state and zip and sort each group by state)

3.5.2.2.7 Joins

Related tables can be combined by some common attributes (foreign keys) to get a concatenated
relation.

3.5.2.2.7.1 Natural Join (Inner Join)

Tables are joined on certain common attributes (foreign keys) and only those tuples are included in the
result that satisfy the join condition mentioned in WHERE clause.

e.g.,

Query the customers with their orders

SELECT C.first_name, C.last_name, orderID, order_val FROM customers C, orders O WHERE
C.cust_ID = O.cust_ID

Result:

First_name last_name order_id order_val

Kamran khalid 21 150

Kamran khalid 22 50

Tom tigar 31 100

Tom tigar 32 90

Nancy roberts 41 40

Nancy roberts 42 145

Nancy roberts 43 80

Here the tables are joined on the common attribute ‘cust_ID’. In this example, we defined aliases for
both the tables i.e., C for customers and O for orders in order to avoid writing long table names again
and again. The attributes can be referenced as

Table-name-or-alias.Column-name

CHAPTER THREE: DATABASE TECHNOLOGIESAND SQL -- A SHORT TUTORIAL

COPYRIGHTED (AMJAD UMAR) 3-26

3.5.2.2.7.2 Outer Joins

Outer joins return all the rows from at least one of the tables or views mentioned in the FROM clause,
as long as those rows meet join conditions. For left outer join, all rows are retrieved from the left table
referenced in the statement and all rows from the right table referenced in a right outer join. All rows
from both tables are returned in a full outer join.

SELECT col_names FROM tab1 LEFT OUTER JOIN tab2 ON common_attribute

(In this case, all the rows from tab1 will be included in the output but only those rows from the tab2
which satisfy the conditions)

SELECT col_names FROM tab1 RIGHT OUTER JOIN tab2 ON common_attribute

(In this case, all the rows from tab2 will be included in the output but only those rows from the tab1
which satisfy the conditions)

SELECT col_names FROM tab1 FULL OUTER JOIN tab2 ON common_attribute

(In the above example, all the rows from tboth the tables will be included in the output)

for example,

SELECT C.first_name, C.last_name, orderID, order_val FROM customers C FULL OUTER JOIN
orders O ON C.cust_ID = O.cust_ID

Result:

Kamran khalid 22 50

Tom tigar 31 100

Tom tigar 32 90

Nancy roberts 41 40

Nancy roberts 42 145

Nancy roberts 43 80

Micheal fox NULL NULL

We can see that in the above case, although Michael fox has no record matching the join condition but
still it is appearing in the result and it is because of full outer join.

3.5.2.2.8 Set Operations as applied to Tables

In order to apply these operations on tables, both the tables/result sets (query results) should have
same attributes defined in the same order. The relations resulting from these operations are sets of
tuples i.e., duplicate tuples are eliminated from the result.

3.5.2.2.8.1 Union

Union of two relations will be a aggregated relation containing all the tuples present in the two tables
e.g.,

CHAPTER THREE: DATABASE TECHNOLOGIESAND SQL -- A SHORT TUTORIAL

COPYRIGHTED (AMJAD UMAR) 3-27

Query all the customers who made orders in year 2000 and those who ordered in year 2001 and they
belong to PA state.

(SELECT cust_ID FROM customers Cus, orders Ord WHERE Cus.Cust_ID=Ord.Cust_ID

AND YEAR (order_date) = ‘2000’) UNION (SELECT cust_ID FROM customers Cus, orders Ord
WHERE Cus.Cust_ID=Ord.Cust_ID

AND YEAR (order_date) = ‘2001’ AND Cus.state =’PA’)

Result:

Cust_ID

2

3

4

3.5.2.2.8.2 Intersection

Intersection operation will generate common attribute values common in both data sets

Following is a simple generic intersection operation:

(SELECT col1, col2 FROM tab1, tab2 WHERE join and other conditions)

INTERSECT

(SELECT col1, col2 FROM tab3, tab2 WHERE join and other conditions)

3.5.2.2.8.3 Difference

Difference operation will return a resultset having those values that are present in the first set (first sub
query) but not in the 2nd set (2nd sub-query). It is implemented by EXCEPT clause i.e.,

(SELECT col1, col2 FROM tab1, tab2 WHERE join and other conditions)

EXCEPT

(SELECT col1, col2 FROM tab3, tab2 WHERE join and other conditions)

3.5.2.2.9 IN, NOT IN, ANY and ALL Clauses

These operators are used in WHERE clause. IN and NOT IN clauses are work in the same way as
check constraint i.e., they are used to restrict the search to certain set of values or to exclude certain
set of values ie.,

SELECT col1 FROM customers WHERE col2 IN (set of values or sub-query)

Suppose we have added another column in the orders table viz. pay_satus which can have only three
values i.e., ‘P’ (dues paid), ‘N’ (Not paid), and ‘D’ (declared defaulted payment). As we have discussed
earlier, this constraint can be enforced by a CHECK clause.

SELECT order_id FROM orders WHERE pay_status IN ('N', 'D');

CHAPTER THREE: DATABASE TECHNOLOGIESAND SQL -- A SHORT TUTORIAL

COPYRIGHTED (AMJAD UMAR) 3-28

(Select the orders for which payment has not been made or has been declared defaulted.)

SELECT order_id FROM orders WHERE pay_status NOT IN ('N', 'D');

(Select the orders for which payment has already been made.)

SELECT last_name FROM customers WHERE ID IN (SELECT SUM (order_val), id FROM orders
GROUP BY ID HAVING SUM (order_val) > 500);

ANY and ALL are used to compare values with a single column set of values.

SELECT col FROM table_name WHERE col > ANY (set of values of same data type or a sub-query
returning a set of values) ;

(Query all ’col’ attribute from the table where every col value is greater than at least one value in the set
mentioned after ANY clause)

SELECT col FROM table_name WHERE col > ALL (set of values of same data type or a sub-query
returning a set of values) ;

(Query all ’col’ attribute from the table where every col value is greater than all the values in the set
mentioned after ALL clause)

Note:

ALL and ANY can be usd with following comparison operators

= , > , > = , <, < =,

! > (not greater than) ,

! < (not greater than),

!= , <> (not equal to)

3.5.2.3 Data Modification

3.5.2.3.1 Deletion

DELETE FROM table_name WHERE attribute_name = some_value

Examples:

DELETE FROM customers

(Delete all the tuples in the customers table without disturbing the table structure)

DELETE FROM customers C WHERE C.ID > 100

(Delete all the customer records whose id is greater than 100)

record deletion involving nested query

DELETE FROM customers where id IN (SELECT id FROM orders O, customers C WHERE C.ID =
O.ID and order_date > '31-dec-2000')

(Delete all the customer records who ordered after 31st december 2000)

3.5.2.3.2 Update

UPDATE table_name SET column_name = new_value WHERE column_name = some_value

CHAPTER THREE: DATABASE TECHNOLOGIESAND SQL -- A SHORT TUTORIAL

COPYRIGHTED (AMJAD UMAR) 3-29

Examples:

UPDATE customers SET zip = '08846' WHERE last_name = 'khalid'

(Change the zip code of all the customers to 08846 whose last name is 'khalid')

UPDATE customers SET register_date = ’31-dec-2001’

(Update registration date for all the tuples in customers table)

3.5.3 Data Administration

3.5.3.1 Views

A view as mentioned in the previous section is a virtual table that is derived from other tables .

Views can be created by CREATE VIEW statement. Syntax for view creating statement is

CREATE VIEW view_title AS (query for which view is desired)

Examples:

Create a view on the first_name, last_name and zip columns of customers table.

CREATE VIEW view1 AS (SELECT last_name, first_name, zip, state FROM customers)

View can also be created on table joins.

Once created, we can query a view just like an ordinary table.

3.5.3.1.1 Administrative Functions

3.5.3.1.1.1 Database

New database can be created by

CREATE SCHEMA store AUTHORIZATION mary

(CREATE SCHEMA is used by oracle databases. For SQL Server databases, CREATE DATABASE
command is used)

In the above statement, a database named ‘store’ is created and table creation privileges has been
granted to the user ‘mary’

Now whatever tables the user ‘mary’ will create in the database ‘store’ will be owned by her and she
could grant access on her tables to other users.

3.5.3.1.1.2 Allocating and revoking permissions

Create

A new user can be created by

CREATE USER username IDENTIFIED BY password

Grant

Access to certain tables or views can be granted to different users using GRANT command i.e.,

CHAPTER THREE: DATABASE TECHNOLOGIESAND SQL -- A SHORT TUTORIAL

COPYRIGHTED (AMJAD UMAR) 3-30

GRANT privileges ON table or view names TO user [WITH GRANT OPTION]

In the above generic GRANT statement, privileges can be

SELECT (querying privilege), UPDATE (data modification privilege) , DELET, INSERT etc.

WITH GRANT OPTION clause authorizes the users to further grant same permission or privilege to
other users.

e.g.,

Grant querying and modification privileges to all users

GRANT SELECT, UPDATE ON customers, orders TO PUBLIC

Grant database administrator privilege to user ‘bob’

GRANT dba TO bob

Revoke

The database administrator can revoke granted privileges by

REVOKE privileges ON table or view names FROM user name

e.g.,

revoke update permission from the user ‘bob’.

REVOKE UPDATE ON orders FROM bob

Note: the users should consult the dbms manual or help files to know the exact syntax of statements
and commands. Here we have used the commands that are typically used for Oracle databases

3.5.4 References for Additional Information

� Elmasri et al, “Fundamentals of database systems”, Addison-Wesley, 2001
� www.microsoft.com/msdn (Microsoft Developer’s Network)

3.6 Object-Oriented Systems and Databases

3.6.1 Introduction

Relational databases are suitable for many applications. However, it is not easy to represent complex
information in terms of relational tables. For example, a car design, a computing network layout, and
software design of an airline reservation system cannot be represented easily in terms of tables. For
these cases, we need to represent complex interrelationships between data elements, retrieve several
versions of design, represent the semantics (meaning) of relationships, and utilize the concepts of
similarities to reduced redundancies.

The next generation of database systems, commonly known as the object-oriented database
management systems (OODBMSs), have been developed to support applications in computer aided
design and computer-aided manufacturing (CAD/CAM), expert systems, computer-aided software
engineering (CASE), and office automation. Simply stated, OODBMSs combine and extend the
features of database management systems, artificial intelligence, and "object oriented programming"
for these and other future applications.

CHAPTER THREE: DATABASE TECHNOLOGIESAND SQL -- A SHORT TUTORIAL

COPYRIGHTED (AMJAD UMAR) 3-31

 It seems that we are in the middle of an object-oriented "revolution". There is object-oriented analysis,
object-oriented design, object-oriented programming, object-oriented databases, and so on. Due to too
many object-oriented "things", many groups are trying to figure out what to do. An example is the
Object Management Group (OMG) which has been formed as a non-profit consortium of several
hundred software and systems manufacturers and technology information providers. OMG has
developed, among other things, CORBA (Common Object Request Broker Architecture) for distributed
applications and UML (Universal Modeling Language) to aid application development. Information
about OMG can be found at their web site (www.omg.org).

For our purpose, we focus on OODBMS. However, many OODBMSs are very closely related to, or are
extensions of, object-oriented programming languages. For a quick overview of object oriented
concepts, see the chapter "Object Oriented Concepts -- A Short Tutorial" in this module. .

3.6.2 Object-Oriented Databases

Object-oriented databases allow storage and retrieval of non traditional data types such as bitmaps,
icons, text, polygons, sets, arrays and lists. The objects can be simple or complex, can be related to
each other through complex relationships, and can inherit properties from other objects. Object-
oriented database management systems (OODBMS), which can store, retrieve and manipulate
objects, have been an area of active research and exploration since the mid 1980s. Most of the work in
OODBMSs has been driven by the computer aided design and computer aided manufacturing
(CAD/CAM) applications.

OODBMS allow complex relationships between data entities. They combine several features of
DBMS, AI and software engineering. In an OODBMS, the data is viewed as objects with the following
stipulations:

� Simple object is a relational table
� Complex objects are built from simple objects
� Each object has properties (attributes)
� Objects are inter-related through complex relationships
� Relationships may carry semantics (meaning). This primarily involves two types of relationships:

inheritance (is-a and a-kind-of –ako) and aggregation (part-of and contains)
� DDL may use inheritance to create new objects
� The DML can be customized with a general query language that uses AI pattern matching
� You can store procedures with the data

CHAPTER THREE: DATABASE TECHNOLOGIESAND SQL -- A SHORT TUTORIAL

COPYRIGHTED (AMJAD UMAR) 3-32

Object-Oriented Database Manifesto
OODatabase Conference (Kyoto, Japan,1989)

Object-oriented Features
• Complex objects
• Object identity
• Encapsulation
• Types and classes
• Inheritance
• Overriding, overloading, and

late binding
• Computational completeness
• Extensibility

Database Features
• Persistence
• Secondary storage management
• Concurrency
• Recovery
• Ad hoc queries

Figure 3-9: The Object Oriented Database Manifesto

What exactly is an OODBMS? This question has been asked since the mid 1980s. In 1989, a group of
computer scientists got together and established "The Object-Oriented Database Manifesto" [Atkinson
1989]. This Manifesto, displayed in Figure 3-9, establishes the basic properties of OODBMS by
combining conventional database functionalities with object-oriented functionalities. According o this
manifesto, the key properties of OODBMSs are (for an expanded discussion of the manifesto, see the
chapter "Object Oriented Concepts -- A Short Tutorial" in this module):

� Data may be stored, retrieved and manipulated as complex objects which consist of sets, lists,
arrays or relational tuples.

� OODBMSs allow creation of objects from existing objects by using inheritance of properties.
� Procedures can be stored as objects in the database.
� The relationships between objects can be complex, many to many relationships.
� Objects can contain very large values to store pictures, voice or text.
� Most OODBMSs provide facilities to track multiple versions of an object.
� In many OODBMS, the data manipulation language is closely related to the programming

language

The OODBMS systems generally fall into two categories:

� Extensions of the object-oriented programming languages (OOPL) to include the features of
DBMS. Examples are O2 and Gemstone systems.

� Extensions of the relational DBMS to include the features of OOPL. Examples are Starburst and
POSTGRESS.

OODBMS have moved from state of the art to state of the market, however they are not heavily used at
the time of this writing (less than 5% of corporate data is stored in OODBMS). Objectstore is one of the
most popuIar OODSBMS. It is beyond the scope of this book to discuss detailed features of existing
OODBMS.

Advantages/Disadvantages of OODBMSs. OODBMSs have emerged due to the limitations of
relational DBMSs in handling complex relationships and semantics. In addition, OODBMS attempt to
include desirable features from AI and software engineering to improve application reusability and
maintainability. Despite several potential advantages of OODBMSs, a few concerns should be noted.

CHAPTER THREE: DATABASE TECHNOLOGIESAND SQL -- A SHORT TUTORIAL

COPYRIGHTED (AMJAD UMAR) 3-33

First, standard query languages for OODBMS such as OQL are not very popular commercially. In
addition, the performance characteristics of OODBMSs are not well understood. This problem is
expected to be addressed by performance improvements in the OODBMSs. We have to see how
OODBMSs operate in large applications with thousands of users.

3.6.3 Objectizing a RDBMS

Although OODBMSs have not been very successful commercially, handling objects in EB applications
is to handle the OO views on relational databases. The main motivation is that most programs work on
objects and should not have to translate between object and relational views. Basically, RDBMS
operations need to be performed on objects (i.e., fileds), on sets of objects (i.e., rows), and on tables
(i.e., joins). The different approaches to “objectizing RDBMSs” are:

� BLOB (binary large objects) support in RDBMS. Blobs allow you to store, retrieve, and display
graphics, memos, and video clips. However, BLOBS do not allow querying the content of the
BLOB (i.e., you can store and display the pictures of employees but cannot select the employees
who have images).

� View relational data as a collection of methods provided by the RDBMS. For example, the SQL
statements such as create, select, update, insert, delete, and grant can be thought of as methods
that are performed on the data.

� Build wrappers around SQL (i.e., treat each SQL statement as an OO statement). The wrapper
contains classes to create a table, to insert a record, to read arecord, to examine the satus of an
object, and to do do several other low level database actions. Warappers of this type are becoming
commercially available (e.g., DBTools.h++ from Roguewave). This is not a problem in static SQL
because in this case, the variablesa are bound at startup time and type checking is done at
compile time. However, for dynamic SQL, this is tough to do because how can you know about
variables and type checking.

� Build wrappers around the database itself (i.e., make tables look like a set of objects and perform
operations on them). These wrappers are more sophisticated and map application objects to
relational tables (some wrappers provide the reverse functionality also). These wrappers support
encapsulation (i.e., methods to define the inetrfaces to the databases, inheritance (i.e., the sharing
of attributes, queries, methods, and relationships between objects); and associations (i.e., the
relational foreign key relationships are associated to relationships among classes). These
wrappers may also map relational database capabilities to object classes. And support object
caching, transactions, and database efficiency. The wrappers provided by Persistence Software
fall into this category.

3.7 Overview of Database Design

Database design attempts to provide consistent and current information to the end users in a speedy
fashion. The design process goes through the following general steps, illustrated through a simple
example in Figure 3-10:

1). Capture Information Requirements. The information requirements of different users and
applications are developed after interviewing different sets of users.

2).Build a Logical Data Model (LDM). An LDM represents user data requirements and contains the
following pieces of information:

� Entities (objects) such as customers, parts, products, students
� Attributes of entities such as the name and address of customer
� Relationships between objects such as customers buy products.

CHAPTER THREE: DATABASE TECHNOLOGIESAND SQL -- A SHORT TUTORIAL

COPYRIGHTED (AMJAD UMAR) 3-34

Different people may develop different views of LDM (user view, management view, programmer view).
These views are usually integrated to create a common corporate LDM. In addition, the LDM is cleaned
up to remove synonyms, homonyms, and derived data. The resultant LDM can be represented as an
ERA diagram.

3). Develop a Database Design. This step first creates a “normalized” database structure.
Normalization is a procedure for decomposing large data entities to remove update anamoly (should
not have to update more than is needed) and delete anamoly (should not delete more than is needed).
Normalization, not needed for retrieval only data, should be in 1st, 2nd and 3rd normal forms. Discussion
of normalization is beyond the scope of this book. See the side bar “An Informal Normalization
Example” for the key ideas.

After normalization, known as logical database design, a physical database design translates the
normalized logical data model into a DBMS supported physical structure. The physical design depends
on the DBMS type. In case of a relational database system, the physical design shows the tables, the
attributes of each table, and the indexes (see section C3). Detailed discussion of this topic is also
beyond the scope of this book.

In a distributed environment, the design also includes the following steps.

4). Data Partitioning and Clustering. This step attempts to decompose data for application/user specific
requirements. For example, as shown in Figure 3-10, the customer table is partitioned into two regions
because the customers live in two regions. The partitions may also be clustered because some
information is always used together.

5). Data Allocation. The clustered data is allocated to different physical sites to minimize response time
and improve availaability. A very large number of data allocation algorithms have been developed in
the academic community under the heading of “file allocation problem (FAP)”.

The book “Database Design” by Toby Teorey (Prentice Hall) is an excellent source of information on
this topic.

CHAPTER THREE: DATABASE TECHNOLOGIESAND SQL -- A SHORT TUTORIAL

COPYRIGHTED (AMJAD UMAR) 3-35

Customers Products

ProductsCustomers Orders

•Customer (cname, cno, product)
•Product (pid, pname, cost)

•Customer (cname, cno, product)- site1
•Customer (cname, cno, product)-site2
•Product (pid, pname, cost)

Customer Customer

Product
Site1 Site2

HQ

Step1: Information
Requirements

Step2: Data Modeling

Step3: Logical&Physical
Database Design

Step4: Data Partitioning
and Clustering

Step5: Data
Allocation

Figure 3-10: A Database Life Cycle

An Informal Database Normalization Example

Let us start with a table that represents a company (the underlined attributes indicate primary keys):

Company (ename, ssn, bdate, address, dnumber, dname, dmanager, pnumber, hours,
pname, plocation)

This table is too large, we may want to subdivide into two:
Emp-Dept (ename, ssn, bdate, address, dnumber, dname, dmanager)
Emp-Project (ssn, pnumber, hours, ename, pname, plocation)

Normalization is basically a formal method to decompose: the tables.
– First normal form: a table with fixed attributes and no duplicate records
– Second normal form: every non-primary attribute must depend fully on the primary

key

Let us consider the table:
Emp-Project (ssn, pnumber, hours, ename, pname, plocation)

For 2nd normal form, break into two tables: T1(ssn, pnmumber, hours), T2(ssn, ename), T3(pnumber,
pname, plocation). Now let us look at the third normal form:

– Third normal form: non-prime attributes must not depend on each other (no
subtables)

CHAPTER THREE: DATABASE TECHNOLOGIESAND SQL -- A SHORT TUTORIAL

COPYRIGHTED (AMJAD UMAR) 3-36

Let us now consider the table
Emp-Dept (ename, ssn, bdate, address, dnumber, dname, dmanager)

To make it in 3rd normal, split into two; T1 (ename, ssn, bdate, address) and T2(dnumber, dname,
dmanager)

The result of normalization is the following 5 tables generated from the company table: :
Employee (ename, ssn, bdate, address, dnumber)
Department (dname, dnumber, dmanager, dlocation)
Dept-location (dnumber, dlocation)
Project (pname, pnumber, plocation, dnumber)
Works_on (ssn, pnumber, hours)

Keep in mind that too much normalization produces large number of tables that may create
performance problems due to too many joins. Denormalization consolidates tables back for
performance improvement.

3.8 Chapter Summary

Different databases are used for different applications in a distributed computing environment. As
stated previously, relational database technology is state of the market and state of the practice. SQL,
the query language for relational DBMS has become a de-facto standard for enterprise-wide data
access, even for non-relational data sources. However, relational DBMSs are not suitable for many
engineering and other emerging applications discussed in the previous section. Object-oriented
DBMSs are state of the market but not heavily state of the practice at the time of this writing.

The main question is which database technologies are suitable for which applications? Fig. E.12
attempts to answer this question by using the data and process complexity of applications as a
measure. For example, the x-axis shows the complexity of the data model (one to one versus many to
many relationships) and the y-axis shows the complexity of the processes (simple retrieval and storage
versus complex computations). This figure, based on a diagram produced by Ontologic Corp., shows
the regions where some of the database technologies can be most effective. For example, it shows that
the older network and hierarchical DBMSs are more suited for complex data but relatively simple
processing type applications while the relational DBMSs are more suitable for applications with
relatively simple data models. Theoretically, OODBMSs are intended for the complex data and
complex processing type applications. A few applications are shown in Fig. E.12 for illustrative
purposes.

CHAPTER THREE: DATABASE TECHNOLOGIESAND SQL -- A SHORT TUTORIAL

COPYRIGHTED (AMJAD UMAR) 3-37

Simple
 Data

Complex
Data

Complex
Application

Simple
Application

RDBMS

OO
DBMS

Hierarchical/
Network

Figure 3-11: A Model for Evaluating Database Technologies

3.9 CASE STUDY: Databases for XYZCORP

XYZCORP has embarked on a corporate-wide database effort. As a result of this effort, you have been
assigned the following three projects.

Project A): Define the databases needed for the IMCS (Integrated Manufacturing Control System)
project described in chapter 8 Case Study. For each database, you should:

� Define the logical data model for IMCS
� Define the main attributes of the database in IMCS
� Describe at least 5 queries, in English, against the database
� Choose an appropriate data model

Project B): Assume that the following databases have been defined for the stores and the products
sold in different stores in IMCS:

 . STORE (S-NAME, S-ID, S-ADDRESS, S-MANAGER, PROD-ID) . PRODUCT (PROD-ID, PROD-
NAME, PROD-TYPE, PROD-DESCRIPTION)

� Create these two databases by using SQL
� Translate the following simple queries to SQL: .

List the store names in Michigan .

List the names and ids of product type = "PC" .

List the names of the stores that carry product type = "PC" .

Count the total number of stores .

Count the total number of distinct products .

Delete the product type "radio" from the products

CHAPTER THREE: DATABASE TECHNOLOGIESAND SQL -- A SHORT TUTORIAL

COPYRIGHTED (AMJAD UMAR) 3-38

Create indices on PROD-ID and S-ID

Project C): Design a Bill of Materials (BOM) database for the IBM PC compatible desktop computers.
You must include all materials (connectors, adapters) in this database. Create the BOM database by
using SQL statements and issue at least 5 SQL queries against the BOM database. What are the
limitations of the relational data model, if any, for this database.

The administration has also asked you to create a database which describes the XYZCORP network.
The backbone network used by XYZCORP has been described in other chapters. This database will
be used for different purposes: to maintain an inventory of the network devices, to provide information
for network management and to support expert systems. List the main attributes of this database and
choose an appropriate data model for this datanbase.

Hints about the Case Study

Project A). The LDM for IMCS would show business entities (customers, bills, inventory, etc),
engineering entities (designs, test results, etc) and manufacturng entities (robots, cells,e tc). Many of
these entities can be represented as relational or object-oriented databases.

Project B). This is a straightforward application of SQL

Project C). The BOM database can be a relational database. However, the network configuration
database should be an object-oriented database. You should especially view this database as a
knowledgebase for many tools in XYZCORP.

3.10 Key References

Atkinson, M., et al, "The Object-Oriented Database Manifesto", Proceedings of the International Conference on Deductive and
Object-Oriented Databases, Kyoto, Japan, Dec. 1989.

Bernstein, P.A. and Chu, D.W., "Using Semi_joins to Solve Relational Queries", Journal of ACM, Jan. 1981.

Bobak, A., “Data Modeling and Design for Today's Architectures”, Artech House, 1997

Booch, G., "Object Oriented Design with Applications", Addison-Wesley, 1994 (second edition).

Codd, E.F., "Fatal Flaws in SQL", Datamation, August 15 and September 1, 1988.

Date, C.J., "An Introduction to Database Systems", Fifth Edition, Vol. 1 and Vol. 2, Addison-Wesley, 1990.

Date, C.J., "A Guide to DB2", Addison Wesley, 1984

Date, D.J., "A Guide to The SQL Standard", Addison-Wesley, 1987

Dowgiallo, E., "An Introduction to SQL", Micro Systems, September 1988.

Elmasri, R. and Navathe, S., "Fundamentals of Database Systems", Benjamin-Cummings, 2001

Gray, J., "The Transaction Concept: Virtues and Limitations", Proceedings of Conference on Very Large Databases, Sept. 1981,
pp. 144-154.

Hardwick, M., and D.L. Spooner, "Comparison of Some Data Models for Engineering Objects", IEEE CG&A, March 1987

Hernandez, M. “Database Design for Mere Mortals : A Hands-On Guide to Relational Databases” Addison-Wesley, 1997
Hursch, C. and Hursch, J., "SQL: The Structured Query Language", TAB Books, 1988

Inmon, W., "Optimizing Performance with Denormalization", Database Programming and Design, Premier Issue, 1987

Muller, J., “Database Design for Smarties: Using UML for Data Modeling”, Morgan Kaufman, 1999

Purba, S (editor)., “Data Management Handbook”, 3rd Edition, Auerbach, 1999

“Schur, S. “The Database Factory : Active Database for Enterprise Computing”, John Wiley, 1994

CHAPTER THREE: DATABASE TECHNOLOGIESAND SQL -- A SHORT TUTORIAL

COPYRIGHTED (AMJAD UMAR) 3-39

Stroustrup, B., "The C++ Programming Language", Addison-Wesley, 1986

Teorey, T.J and Fry, J.P "Design of Database Structures", Prentice Hall, 1982.

Owens, K., “ Building Intelligent Databases With Oracle Pl/Sql, Triggers, and Stored Procedures”, (2nd Edition), Prentice Hall,
1998.

Vinzant, D., "SQL Database Servers", Data Communications, January 1990, pp. 72-88.

	- Database Technologies and SQL -- A Short Tutorial�
	Introduction
	Database Management Concepts
	Files and Databases
	Database Management System (DBMS)
	Data Models and Categories of DBMS.
	Data View Support
	Data Definition Facilities
	Data Manipulation Facilities
	Operational Facilities

	Overview of Relational Databases
	SQL -- A Quick Overview
	Data Definition
	Data Retrieval
	Data Modification
	View Support
	Administrative Facilities
	Embedded SQL
	Performance
	SQL Products
	Strengths and Weaknesses

	SQL -- A Closer Look
	Data Definition
	Create Relations (tables)
	Drop Table
	Alter table
	Establishing Constraints
	Primary key
	Foreign Key (for referential integrity)
	CHECK
	DEFAULT
	UNIQUE
	Dropping Constraints

	Indexing

	Data Manipulation
	Data Insertion
	Data insertion for customers table
	Data insertion in orders table

	Querying Data
	Applying Conditions to Queries (Use of WHERE clause):
	Conditions on strings (use of LIKE clause)
	Aggregate Functions
	Retrieving Data in Groups
	Applying Conditions on the Groups (Use of HAVING clause)
	Sorted Retrievals (use of ORDER BY clause)
	Joins
	Natural Join (Inner Join)
	Outer Joins

	Set Operations as applied to Tables
	Union
	Intersection
	Difference

	IN, NOT IN, ANY and ALL Clauses

	Data Modification
	Deletion
	Update

	Data Administration
	Views
	Administrative Functions
	Database
	Allocating and revoking permissions

	References for Additional Information

	Object-Oriented Systems and Databases
	Introduction
	Object-Oriented Databases
	Objectizing a RDBMS

	Overview of Database Design
	Chapter Summary
	CASE STUDY: Databases for XYZCORP
	Key References

