
MODULE (TECHNOLOGIES)

 © – AMJAD UMAR

8-1

8 E-Commerce Platforms and

Distributed Transaction Management

8.1 INTRODUCTION..8-2
8.2 INTERNET-BASED PURCHASING OVERVIEW ..8-4

8.2.1 Case Study: Online Purchasing for XYZ Corp.. 8-4
8.2.2 A Quick Overview... 8-5
8.2.3 A Simple C2B Purchasing Example... 8-5
8.2.4 A Simple B2B Purchasing Example.. 8-7

8.3 E-COMMERCE MIDDLEWARE ... 8-11
8.3.1 Extranets and Virtual Private Networks (VPNs) for ECommerce 8-11
8.3.2 Shopping Carts.. 8-12
8.3.3 Catalog Management systems.. 8-12
8.3.4 XML for Ecommerce... 8-14
8.3.5 Sample XML Source and DTD for Purchase Order... 8-15
8.3.6 Ecommerce Transaction Processing ... 8-17
8.3.7 Electronic Payment Systems -- An Example of Transaction Processing 8-20

8.4 SECURITY FOR E-COMMERCE/E-BUSINESS... 8-24
8.4.1 Overview.. 8-24
8.4.2 Overview of Core Security Technologies... 8-26
8.4.3 Information Protection (Privacy and Integrity) .. 8-27
8.4.4 Authentication and PKI .. 8-30
8.4.5 Authorization and Access Control .. 8-31
8.4.6 Accountability and Assurance.. 8-32
8.4.7 A Security Example... 8-32
8.4.8 Summary of Security... 8-35

8.5 ELECTRONIC COMMERCE PLATFORMS: PACKAGING EC MIDDLEWARE.......................... 8-37
8.5.1 Conceptual View of EC Platforms ... 8-37
8.5.2 Conceptual Architecture of eCommerce Platforms .. 8-38
8.5.3 Examples of eCommerce Platforms... 8-39

8.6 CASE STUDIES AND EXAMPLES ... 8-40
8.6.1 eCommerce for Small Businesses .. 8-40
8.6.2 International Racehorse Transport Uses eCommerce.. 8-40
8.6.3 HD Chauffeur Rides Uses eCommerce ... 8-41
8.6.4 Wholesale Order & Reporting System... 8-41
8.6.5 Diary Phone -- a Web-based Application to Record People’s Thoughts................... 8-42

8.7 CASE STUDY: ON-LINE PURCHASING FOR XYZCORP.. 8-42
8.8 CONCLUDING COMMENTS.. 8-43
8.9 REVIEW QUESTIONS AND EXERCISES.. 8-44
8.10 ATTACHMENT A: DISTRIBUTED TRANSACTION MANAGEMENT DETAILS 8-44

8.10.1 Overview of Transaction Management Concepts ... 8-44
8.10.2 Distributed Transaction Processing Concepts.. 8-46

CHAPTER 8: E-COMMERCE PLATFORMS AND DISTRIBUTED TRANSACTION MANAGEMENT

8-2

8.10.3 Data Replication Servers -- The TP-Lite Approach... 8-49
8.10.4 Two -Phase Commit ("TP-Heavy") Versus Data Replication Servers ("TP-Lite")... 8-53
8.10.5 Distributed Transaction Processing: TP-Less, TP-Lite, TP-Heavy.......................... 8-56

8.11 ADDITIONAL INFORMATION... 8-58

NOTE: This chapter covers specialized technologies for ecommerce and transaction processing. The
reader may choose to postpone this discussion till later.

8.1 Introduction

Many enterprise architecture and integration projects involve ecommerce and transaction processing
applications. Simply stated, ecommerce (EC) represents buying and selling over the Internet. At the
core of ecommerce is on-line buying/selling through a catalog using a shopping cart, electronic
wallet, or similar tool. Ecommerce includes both consumers purchasing goods and on-line buyers
purchasing goods from a single supplier. It can also include links to back-end systems for inventory
updates and credit checking. Technically speaking, ecommerce translates into the need for consumers
to purchase items (C2B) and frequently to carry out business transactions across multiple
organizations (B2B). In this chapter, we are primarily concerned with the details of the EC
middleware needed to support EC transactions over the public Internet. At a very basic level, the
following core EC functionalities need to be supported:
� Advertising
� Items Browsing, selection, items purchase cart management
� Purchasing
� Billing /invoicing
� Payments
� Shipping methods and inventory management for physical good

The infrastructure supporting these functionalities is subject to stringent security, performance and
reliability requirements. A wide range of IT infrastructure components are needed to support these
and other EC activities. Figure 8-1 shows a high level view of the IT infrastructure services needed to
support variants of EC. This chapter concentrates on Commerce Servers that package several
technologies (network support, EC middleware services, EC software development environments,
and EC monitoring/control systems) to build, deploy and manage EC applications. These servers are
also known as eCommerce servers (see the sidebar "Commerce Servers Versus Application
Servers"). At a conceptual level, the IT infrastructure of the commerce servers consists of the
following:
� Networking services to provide the network transport between EC partners. These services

include the traditional routing and flow/error control support. The network services have been
provided by private value added networks (VANs) but are now being provided through Public
Internet and/or Extranets that use the Internet technologies over privately owned and/or managed
networks. See Section 8.3.1 for more details.

� General purpose Middleware services to support interactions between remotely located,
including but not restricted to, EC partners. These core components provide Web services,
directory services (e.g., locating the wide range of EC services), electronic messaging (e.g.,
Email), remote data services (e.g., bulk data transfer, browsing, and programmed access), and
remote application services (e.g., interactions between EC users and EC applications through
remote procedure calls (RPCs), message oriented middleware (MOM), or Web Services calls).
These services are not discussed in this chapter (they have been discussed in previous chapters).

MODULE (TECHNOLOGIES)

 © – AMJAD UMAR

8-3

� Ecommerce middleware services to provide value added features needed by EC applications.
Examples of these services are purchasing, payments, billing, EDI, and XML support. This
middleware is the focus of this chapter. Additional details about most of these services can be
found in Section 8.3.

� B2B middleware services needed to support the B2B trade. Examples of these services include:
support for supply chain management, enterprise integration software, and electronic
markets/trading hubs. These services are discussed in more detail in a later chapter.

� Security issues in EC/EB to assure that the information transfer between partners is conducted
in a secure manner. We will discuss this topic briefly in Section 8.4.

Commerce Servers Versus Application Servers

The term commerce server (CS) is often used loosely in the industry to describe the set of subsystems
bridging the gap between a web server and a payment server. Common functionality of a CS includes
shopping carts, catalog management, purchasing logic (e.g., customer verification), logs/audit trails to
track sales activities, and interfacing with the back-end enterprise systems such as payment, order
processing, and inventory control. Sometimes the term is used to include the web server and/or the
payment server itself. The following figure shows a conceptual view of commerce server.

Simply stated, an application server (also known as app server) is a platform for development,
deployment, and management/support of Web-based applications. The current and future versions of
application servers include facilities for development, deployment, and management of web-XML
applications. This includes facilities for EJB (Enterprise Java Bean) component development, XML
exchanges, load balancing, failure handling, and adapters for connecting to back-end applications.

In essence, a commerce server is an application server that specializes in e-commerce. An interesting
illustrative example is the Netscape Application Server that combines web development capabilities
with enterprise applications that integrate with corporate data sources. At present, this server has
evolved into Sun Iplanet that provides a complete set of e-commerce facilities.

Back-endBack-end
SystemsSystems

(Order Processing,(Order Processing,
Inventory Control, Inventory Control,

Payment)Payment)

Purchasing
System

HTTP

Web Web
BrowserBrowser

CommerceCommerce
ServerServer

WebWeb
ServerServer

 Product
Catalog

 Advertising
Pages

Adapter

Conceptual View of a Commerce Sever

Many commerce servers are becoming commercially available. Microsoft's Commerce Server, Sun's
Iplanet, and IBM's WebSphere are examples. It is not our objective to analyze commercial products
in detail. Instead the building blocks of commerce servers are discussed in some detail.

CHAPTER 8: E-COMMERCE PLATFORMS AND DISTRIBUTED TRANSACTION MANAGEMENT

8-4

Ecommerce systems rely very heavily on transaction processing systems to make sure that all data is
properly synchronized and no transactions are lost due to system failures. Attachment A (Section
8.10) gives some technical details of transaction management, especially in distributed environments.

C2B Middleware
(e.g., ecommerce middleware)

Network Services
- TCP/IP
- wireless, ATM, frame relay, DSL, Fiber Networks

General Middleware
(e.g., Web Technologies, Remote Application and Database Access,
Distributed Object Computing, Distributed Transactions)

B2B Middleware
(e.g., B2B workflows, B2B
application Integration)

B2B Applications
(e.g., supply
chains, emarkets)

C2B
Applications
(e.g., ecommerce)

 General
Distributed
Applications

Middleware
Platform

(Application
Server)

Specialized
Applications
(mobile, multimedia

Specialized Middleware
(mobility, multimedia)

Figure 8-1: IT Infrastructure for E Commerce.

The Agenda The Agenda
• Overview & eCommerce Middleware
• eCommerce Security
• eCommmerce Platforms
•Distributed Transaction Management

8.2 Internet-based Purchasing Overview

8.2.1 Case Study: Online Purchasing for XYZ Corp

XYZCorp wants to setup an on-line purchasing system that will allow customers to purchase the
company products through the Web. You have been asked to workout the details to make it happen.
Specifically, you have to develop an overall architecture of the system, show how the payment
system will work through a credit card, identify the key players and their role in purchase order
processing, develop a security solution, identify the role of XML in this system, and find an e-
commerce platform that can support this system. We will provide hints about this at the end of the
chapter.

MODULE (TECHNOLOGIES)

 © – AMJAD UMAR

8-5

� Get the demo copy of the selected e-commerce platform (availability of a demo copy may be a
selection criteria), download it and run some simple experiments to see how these platforms
work.

� What will you need to do to convert this storefront into a virtual storefront (i.e., the customer can
choose items from multiple suppliers)?

8.2.2 A Quick Overview

Purchasing is at the core of Ecommerce. As shown in Figure 8-2, the purchasing process consists of
several steps that can be viewed in terms of pre-purchase, purchase consummation, and post-purchase
activities. EC middleware must support these activities over the Internet. Let us explain the principles
of Internet-based purchasing through two simple examples. We will postpone, until later in this
chapter, the discussion of more sophisticated purchasing models such as trading hubs, clearing
houses, and electronic marketplaces.

E-procurement

Do everything
electronically

Post-Purchase Activities
•Settlement of payment disputes
•Resolution of quality issues (e.g., return policies)
•Customer questions and answers

Purchase Consummation
•Placement of order
•Authorization of payment
•Receipt of product

Pre-Purchase Activities
•Product search and discovery
•Comparison shopping and product selection
•Negotiation of terms (price, delivery time)

Figure 8-2: Purchasing Steps

8.2.3 A Simple C2B Purchasing Example

Let us start with a simple example of a company that wants to establish an electronic store front, i.e.,
allow customers to buy the products from the company over the Internet. The following discussion
shows the usage scenarios and elaborates the principal activities of Ipurchase, a system developed to
support the storefront. Figure 8-3 shows a simplified view of Ipurchase with various Web
technologies such as HTTP, HTML, etc. The usage scenarios are presented from three different
perspectives: customer usage, business administrator usage (e.g., purchasing department), and product
administrator usage (e.g., IT Group).

CHAPTER 8: E-COMMERCE PLATFORMS AND DISTRIBUTED TRANSACTION MANAGEMENT

8-6

Back-endBack-end
SystemsSystems

(Order Processing,(Order Processing,
Inventory Control, Inventory Control,

Payment)Payment)

Purchasing
System

 Product
Catalog

HTTP
HTML
Docs

Web Web
BrowserBrowser

PurchasePurchase
SiteSite

WebWeb
ServerServer

CustomerCustomer
SitesSites Logs

Buyers Seller (Supplier)

Figure 8-3: A Simple Internet-based Purchasing System

8.2.3.1 Customer Processing

i). Initial Processing
� Customer gets on the corporate Home Page.
� IPurchase Greeting screen shows and walks the customer through various informational and

marketing pages.

ii). Search and Browse Catalog and Select Items
� A product review and selection screen is shown to the user as a default. Other views are also

possible (e.g., vendor view, manufacturer view).
� Customer browses and/or searches through the catalog based on product attributes (e.g., price,

name, manufacturer, etc.), synonyms, and full text searches (e.g., “find me a laptop”).
� If an item is not available (as indicated in the catalog), the customer can choose to terminate the

session or browse for other items.
� Customer selects the product(s) to purchase.
� A “shopping cart” is populated with the items selected by the customer.
� Customer verifies the items to be purchased and clicks on “purchase”.
� The system asks for customer ID or payment information such as credit card number.
� The validation process is triggered to verify the payment information.
� Customer is notified whether to proceed (Catalog Review and Selection) or not with appropriate

errors/guidance messages on how to correct the errors.
� The purchase information is also validated for exceeding the purchase limit. The buyer is given

help in making corrections (shuffling the shopping cart), and resubmitting.

iii). Order Generation
� An order entry is created with a control number.
� The order log has information that can also be used for General Ledger (i.e., customer ID, name,

items ordered, total quantity, etc.) .
� Order is logged in the log database.
� The order is sent to the order processing system.
� The user is given an end of order screen and is given the control number.
� An email may be also sent to the user documenting the order.

iv). Order Processing

MODULE (TECHNOLOGIES)

 © – AMJAD UMAR

8-7

� The order processing system receives the order and initiates its order processing.
� The supplier sends the needed items to the customer through its shipping department.
� If for some reason, the order cannot be fulfillled, then the system notifies the buyer through email

or phone call.

8.2.3.2 Business Administrator Usage Scenarios

The business administrator (e.g., purchasing department) will be involved in the following steps to
reconcile the orders and to print various reports. These operations will require password protection.

v). Reconciliation and customer support
� The order log database is reconciled with the shipment data.
� Error reports are generated for mismatches.
� Purchasing and shipment resolve the errors.
� Customer issues are resolved by the customer support department.

vi). Payment processing
� The payment is handled mainly through credit cards.
� High priced items are handled through purchase orders, invoices and accounts payable (i.e.,

accounts payable processes the invoices, and invokes other back-end processing such as General
ledger).

viii). Management reporting
� Generate and send reports to managers periodically (who ordered what in their department).
� Allow ad hoc report generation on an ad hoc basis by the managers.
� Generate reports on system activities (how many people logged on, how many actually

purchased something, etc.)

8.2.3.3 Product Administrator (“Web Master”) Usage Scenarios

The administrators perform the following functions (after the system has been developed and
installed):
� Purchase system installation and configuration procedures
� Design and populate the catalog
� Replenishment of the catalog periodically (e.g., daily)
� System performance monitoring, tuning, backup/recovery, etc.
� Update software when needed
� Audit the system for security breeches

8.2.4 A Simple B2B Purchasing Example

For sake of discussion, let us now introduce a simple B2B purchasing system, Bpurchase, that differs
from the C2B Ipurchase system in two respects: a) it involves a B2B relationship between a buyer
corporation and multiple suppliers, and b) the buyers are employees of the buying corporation with
proper authorization for purchasing.

Bpurchase was developed for ordering low-cost, fast delivery (within 24 hours) items with a
maximum order of $1,000 from multiple suppliers. We assume that less than a dozen suppliers
(vendors) participate in the system handling around 40,000 orders per year. Bpurchase replaces a

CHAPTER 8: E-COMMERCE PLATFORMS AND DISTRIBUTED TRANSACTION MANAGEMENT

8-8

current corporate purchase system for employees that is primarily phone-based. In the phone-based
system, the employee calls the vendor, the vendor asks the employee few questions (e.g., items
needed, employee ID, project number, etc.), supplies a control number to the employees, ships the
requested items to the employee, and then sends an invoice to the company.

The purpose of Bpurchase is to minimize operational costs and improve customer satisfaction by
automating the phone-based purchase system. The basic idea is to allow the employees to search and
select the items to be purchased and create an electronic "purchase cart". From the purchase cart, an
automatic order is generated that is sent to the vendors for purchasing.

The main B2B consideration is that an “open purchase order (PO)” agreement exists between the
buying organization and the sellers, i.e., the sellers (vendors) send a monthly invoice to the buyer that
shows all the purchases made that month. Open PO is a convenient way of buying low cost items
such as office supplies (a PO does not have to be issued for each pencil).

The following discussion shows the same usage scenarios as discussed for the Ipurchase system.
The usage scenarios are presented, as before, from three different perspectives: employee usage,
business administrator usage (e.g., purchasing department), and product administrator usage (e.g., IT
Group).

Back-end LocalBack-end Local
SystemsSystems

(Order Processing,(Order Processing,
Inventory control, Inventory control,

Payment)Payment)Purchasing
System

 Product
Catalog

HTTP

HTML
Docs

Web Web
BrowserBrowser

PurchasePurchase
SiteSite

WebWeb
ServerServer

CustomerCustomer
SiteSite

 Logs

External SystemsExternal Systems
(Order Processing,(Order Processing,
Inventory control, Inventory control,

Payment, Payment,
Supply Chain Supply Chain
Management)Management)

Firewall

EDI.
XML

Buyer Sellers

Figure 8-4: Conceptual View of B2B Purchasing

8.2.4.1 Employee Usage Scenarios

The employees will use the following steps to order supplies:

i). Initial Processing
� Employee gets on the corporate Home Page.
� BPurchase Greeting screen shows and asks for employee ID, project ID, etc. Passwords are not

required to use the system.

MODULE (TECHNOLOGIES)

 © – AMJAD UMAR

8-9

� The validation process is triggered to verify employee and project information.
� Employee is notified whether to proceed (Catalog Review and Selection) or not with appropriate

errors/guidance messages on how to correct the login errors.

ii). Search and Browse Catalog and Select Items
� A product review and selection screen is shown to the user as a default. Other views are also

possible (e.g., vendor view, manufacturer view).
� Employee browses and/or searches through the catalog based on product attributes (e.g., price,

name, manufacturer, etc.), synonyms, and full text searches (e.g., “find me adhesive tapes).
� If an item is not available (as indicated in the catalog), then the employee can optionally generate

an email to the vendor asking about item availability. There is no back-order processing in this
system. The user can search for the needed item from another vendor catalog or choose to
terminate the session (i.e., call vendor off-line).

� Employee selects the product(s) to purchase.
� A “shopping cart” is populated with the items selected by the employee.
� Employee verifies the items to be purchased and clicks on “purchase”.
� The purchase information is validated against the IPurchase limit, project information, budget,

etc. The employee is given help in making corrections (shuffling the shopping cart), and
resubmitting.

iii). Order Generation
� An order entry is created with a control number.
� The order log has information that can also be used for General Ledger (i.e., employee ID, name,

project, task, items ordered, total quantity, vendor ordered from, etc.).
� Order is logged in the log database.
� The order is sent to the vendor through Email (other options for interfacing IPurchase with

vendor systems are being investigated).
� The user is given an end of order screen and is given the control number.
� An email is sent to the user documenting the order.

iv). Vendor Processing
� The vendor receives the Email and initiates its order processing.
� The vendor sends the needed items to the employee.
� If for some reason, the vendor cannot fill the order, then the vendor notifies the employee through

email or phone call.
� The invoices with additional details (e.g., what was purchased, who purchased it, etc.) are sent by

the vendor to purchasing once a month. At present this information is sent on a floppy diskette.

8.2.4.2 Business Administrator Usage Scenarios

The business administrator (e.g., purchasing department) will be involved in the following steps to
reconcile the orders and to print various reports. These operations will require password protection.

v). Reconciliation
� The order log database is reconciled with the vendor provided invoices.
� Error reports are generated for mismatches.
� Purchasing and vendors resolve the errors.

vi). Invoice processing
� The approved invoices are sent to accounts payable.
� Accounts payable processes the invoices.

CHAPTER 8: E-COMMERCE PLATFORMS AND DISTRIBUTED TRANSACTION MANAGEMENT

8-10

� Other back-end processing (e.g., GL).

vii). Payments
� Accounts payable sends the checks to the vendors (once a month).

viii). Management reporting
� Generate and send reports to managers periodically (who ordered what in their department).
� Send an email to employees indicating what they have ordered and how much the company was

billed for it (this will be used to verify that the employee has actually received the items).
� Allow ad hoc report generation on an ad hoc basis by the managers.
� Generate reports on system activities (how many people used it, how many through Web, etc.).

The business administrators also initialize and maintain the IPurchase system (e.g., define vendor
information such as email and contact, define and modify validation rules (e.g., purchasing limits
based on corporate rank), add/delete vendors, restrict vendors to certain products, etc.).

8.2.4.3 Product Administrator Usage Scenarios

The product administrators perform the following:
� System installation and configuration procedures
� Population of the consolidated catalog
� Replenishment of the consolidated catalog periodically (e.g., daily)
� System performance monitoring, tuning, backup/recovery, etc.

Finally, notice that, because users are authenticated against existing databases, we can eliminate the
need to build and maintain a new system just to authenticate remote access users. This existing
database can be Unix, Linux,, or Windows based.

Suggested Review Questions Before Proceeding
� Do you agree that e-commerce = online purchasing? Why and why not?
� What are the main steps in online purchasing and which ones have been most strongly influenced

by the Internet?
� Suppose you want to sell office supplies through the Internet. Show ALL the steps you will go

through to accomplish this.
� Develop 3 different views of online purchasing for small, medium, and large scale online

purchasing. What are the common building blocks?
� Take a real-life online purchasing system that you are familiar with and compare/contrast it with

the conceptual model described above.

MODULE (TECHNOLOGIES)

 © – AMJAD UMAR

8-11

8.3 e-Commerce Middleware

The EC middleware, as stated previously, provides value added features needed by the C2B
applications and is at the heart of commerce servers. Examples of these services are shopping carts,
catalog systems, electronic payment systems, customer care and billing, EDI/XML, and a variety of
other services (see Figure 8-5). The EC middleware is briefly discussed below after a quick review of
networks for EC.

Web

Browser

Search

Engine

Catalog

Manager

Advertiser

(HTML Docs)

Log

Manager

Order

Processor

Purchase

System

Shopping

Cart

Shipping/

Receiving

System

Inventory

Manager

Merchant

Account

Providers

-Banks

-ISOs

Security

Manager

Log

Manager

Credit

Card

Processor
Payment

gateway

Security

Manager

Purchase

System

Inventory

Manager

Customer
Machine

Web Site
Machine

Back-end/External system(s)Purchase
(Commerce) Server

Payment Server

EDI/XML
Over
Extranet/Public
Internet (VPN)

Order

Processor

Shipping/

Receiving

System

Back-end

gateway

Figure 8-5: More Detailed View of e-Commerce

8.3.1 Extranets and Virtual Private Networks (VPNs) for ECommerce

"Extranet" or "enterprise intranets" are semi-private IP networks which are used to communicate
within a group of interdependent communities of enterprises or trading partners. Examples of such a
group of interdependent community would be the automotive industry (including parts suppliers,
manufacturers, retailers, and insurers), the health care industry (including physicians, pharmacists,
hospitals, labs, and health insurers), or the real estate industry (including brokers, lending agencies,
insurers, lawyers, and inspectors). To succeed, Extranets need to support high quality EC services
(e.g., advertising, browsing/selection, purchasing, billing, and payments) coupled with security and
management considerations.

An Extranet consists of a collection of Internet segments (intranets), each protected by firewalls,
which are interconnected using secure leased lines across the remote locations. This solution provides
security and guaranteed bandwidth, at the cost of leasing lines from telecomm providers. In contrast,
Virtual Private Networks (VPNs) achieve a similar goal (that is, securely connecting remote
locations, branch offices, field workers, telecommuters, vendors, customers, and suppliers) using the
public Internet instead of leased lines. This approach has the advantage of lower costs, and also
allows occasional remote workers to reach a private Intranet from anywhere on the Internet. The main
drawback is the Internet-quality effective bandwidth for the connection. The available bandwidth is
further decreased because of the additional encryption step required for each IP packet.

CHAPTER 8: E-COMMERCE PLATFORMS AND DISTRIBUTED TRANSACTION MANAGEMENT

8-12

Specifically, VPNs use IP tunnelling to provide security across protected intranet islands at the packet
transport level. Tunnelling consists of a client-server pair that exchange encrypted packets using a
private key derived from a token usually supplied by the user. The server sits at the border of a secure
intranet and acts as a proxy towards clients that need to access the intranet from the outside. It
provides authentication by recognizing user tokens and generating private keys for packet encryption.
Packets are first compressed, then encrypted, and finally encapsulated into regular IP packets that are
sent over the Internet. At the receiving end, the encapsulated packets are reconstructed and their
integrity is verified (this is necessary because outsiders supposedly cannot understand the packets in
transit, but they can still tamper with them). If the receiving end is a proxy, the packets are further
routed to their destination inside the Intranet. The tunnel remains active for the duration of a session,
and it is initially set-up when authentication takes place and private keys are exchanged. Frequently,
schemes for one-time tokens with a user PIN are used.

In a typical usage scenario, a remote user connects to the Internet from anywhere, for example
through a local ISP. Once on the network, the VPN client connects to the server at the Intranet
location, and a tunnel is set-up between the client and the Intranet. The packets that travel through the
tunnel are encrypted on one side and decrypted on the other side. Thus the tunnel provides a private
and protected path between the client and the destination site.

8.3.2 Shopping Carts

The Shopping Cart functionality goes beyond simple rendering in the customer browser It provides
the link between the purchasing action and the order merchant fulfillment. The website (e-
commerce.about.com) has very useful information in this area.

The Web Store Software Selector at About.com offers information on over 40 shopping cart services
categorized by price and listed with key details, such as whether the service is suitable for beginners
and whether the shopping cart runs on the local server or the remote host's.

The “Real Soft Cart” is one example of such a Shopping Cart. The Real Soft Shopping Cart is an
Internet ready to use shopping cart system. Real Soft integrates Authorize.net, CyberCash, or any
other secure order provider with a shopping cart. Another feature is the Auction support for
Ebay.com with one-click auction listing capability. The Cart is also integrated with the Customer
Support HumanClick and IcQ putting the customer in immediate contact with Customer Service as
they shop and learn about the products.

Store HTML templates can be edited with FrontPage, PageMill or any other HTML editor. There are
no limits on design capability, number of products, number of departments or number of options per
product. This software runs on UNIX, Linux or Windows based server and uses database to store
product information.

8.3.3 Catalog Management systems

Catalog management systems are used to store, retrieve, and display the information about products
and services that are sold in EC. A catalog can be a simple relational database that keeps product
information or a special purpose catalog system that stores, in addition to data, textual and graphical
information. Examples of few specialized catalog systems are briefly discussed below.

POET eCatalog Suite™ addresses the market need to automate the supplier’s creation and
interchange of catalog data with their customers and business partners. Each customer has unique

MODULE (TECHNOLOGIES)

 © – AMJAD UMAR

8-13

needs, i.e., product needs, negotiated pricing, processes and computer systems. Hence customers
represent an unlimited number of permutations of any supplier’s catalog data. The POET eCatalog
Suite complements the supplier’s existing IS infrastructure, providing catalog information about
goods and services that can be customized for each customer's specific requirements. It would be
nearly impossible to manually generate all the different versions of a catalog to address all of these
permutations on a mass scale. POET addresses this situation by extracting the data from your
existing systems, and storing it in a rich generic data store. When a customer requests a catalog, the
information is pulled from the master catalog and customized via a customer profile to produce a
catalog that is completely customized for that customer. This includes special pricing, data format,
data exchange mechanism, product/service selection, and more. As a result, suppliers are in a
position to ensure their buyer receives exactly the catalog they need to successfully conduct electronic
commerce. POET claims to have effectively exploited the Internet to provide universal connectivity,
mass customization and improved customer relationships providing B2B suppliers to easily assemble
their catalog data into a single master catalog from which custom catalogs are generated on the fly.

IBM Catalog Architect is another suite of products designed for businesses that use IBM
Net.Commerce Hosting Server merchant server software. It enables on-line businesses to create,
update, and manage product information, providing a high degree of efficiency, accuracy and detail
while reducing time spent on traditional catalog information management. Catalog Architect is
designed to understand the inherent relationships between different catalog elements, such as
products, categories, product sets or kits, SKUs or items, and cross-sell items. IBM Catalog
Architect, too, enables personalization and advanced catalog searching, simplified creation and
management of information-rich electronic catalogs, providing a familiar spreadsheet, with drag and
drop interfaces that require no special database, and cut-and-paste capabilities for multiple attributes,
products and categories. It provides intelligent catalog searches to guide customers to product
selection.

IBM Net.Commerce Product Advisor, part of the suite, can provide detailed parametric searches,
virtual sales assistance, and product comparisons. Its object-centered constraint model architecture
provides the foundation for the catalog information knowledge base. By eliminating redundant
product information and allowing a single point of entry for modifying multiple products and SKUs.
IBM Catalog Architect enables the merchant to automatically create new items or SKUs by inheriting
all the previously existing product information, as well as the new attribute values, significantly
reducing the time spent on data entry and content management. It allows businesses to import or to
export information from or to IBM Catalog Architect in an XML format.

There are also available more user-friendly, no-experience-needed catalog products providing 'store
building wizards' to allow merchants to build and manage catalogs, and arrange for payment
processing methods. iCAT Web Store enables a merchant to build a customized, browser-based
catalog, not requiring any downloading or special hardware, using pre-designed templates. It
provides a full range of merchandising and marketing techniques, payment processing and security,
catalog management and updating, business reports, e.g., customer, order and tracking reports, 24 x 7
maintenance for hardware, as well as, assorted merchant education features.

A design and hosting service available is WebCog Commerce, offered by Turnaround Computing.
They work with the merchant to map out the catalog, design the web pages, determine the inventory
and vendor policies, establish payment verification, gather images, establish customer and
administration policies, and test and promote the web site. Requiring somewhat more sophistication
on the part of the merchant, but still not requiring any programming, the merchant uses HTML to
update his catalog.

CHAPTER 8: E-COMMERCE PLATFORMS AND DISTRIBUTED TRANSACTION MANAGEMENT

8-14

8.3.4 XML for Ecommerce

Most enterprise software vendors at present support XML for C2B trade, and standards are being
defined to further simplify the interchange of data using XML. As discussed in a previous chapter,
XML is a markup language, similar to HTML, for documents containing structured information.
XML can be used easily to represent information to be exchanged between traders. Consider, for
example, the following XML document: that represents customer information:

<?xml version=“1.0” standalone=“yes”?>
< -- customer example -- >
<customer>
 <name>
 <first> Pat</first>
 <last> Hemsath</last>
 </name>
 <address>
 <street> room 225</street>
 <street> 410 Hoes Lane</street>
 <city> Piscataway</city><state> NJ</state>
 <zip> 08854</zip>
 </address>
 <phone> 732-699-1111</phone>
</customer>

A Document Type Declarations (DTD) specifies a set of rules for the structure of the document and
can be used to verify the document. For example, the following is a DTD for the customer record just
defined and can be used to verify the customer information: :

<!ELEMENT customer (name, address?, phone?)>
<!ATTLIST customer id CDATA #REQUIRED>
<!ELEMENT name (first, middle?, last)>
<!ELEMENT address (street+, city, state, zip)>
<!ELEMENT phone (#PCDATA)>
<!ELEMENT first (#PCDATA)>
<!ELEMENT middle (#PCDATA)>
<!ELEMENT last (#PCDATA)>
<!ELEMENT street (#PCDATA)>
<!ELEMENT city (#PCDATA)>
<!ELEMENT state (#PCDATA)>
<!ELEMENT zip (#PCDATA)>

This DTD specifies the valid tags to be used jn defining a customer record and can be used to
eliminate invalid records in EC. Figure 8-6 shows the role of XML and DTD in B2C EC. In this case,
a business creates a specification of, say, a purchase order (PO) that is stored in a repository. This
specification represented as a DTD and is downloaded by the consumers for submitting to the
businesses. The XML repository (DTD) may reside at the host business or at a separate site. The
consumers (buyers) download the PO format and create POs in XML. The submitted PO are sent to
the business (seller) and the the XML gateways at the business provide the XML parsing and
verification against the DTD. The invalid submissions are discarded and the valid ones are forwarded
for processing. Similar gateways may exist at the consumer sites also. The next section shows a
sample PO in XML and a corresponding DTD.

MODULE (TECHNOLOGIES)

 © – AMJAD UMAR

8-15

XML Repository
Message Definitions
Business Rules

XML Enabled
Gateway
(Web Browser)

XML Enabled
Gateway
(Web Server)

Business
Consumer

Define specDownload
Spec

Figure 8-6: XML in C2B Ecommerce

However, adoption of XML for EC is not risk free.. Unfortunately, there are many XML standards
for different industry sectors, and even several within the same sector. The possible ways forward
are:
� Adopt super standards repository "framework" such as the Microsoft's BizTalk

(http://www.BizTalk.org). The BizTalk framework aims to make it easier for individual
companies to mix and match XML message formats from different vendors and standards
groupings, picking out the sets that best meet their business needs and application mix. The basic
idea is that your company subscribes to BizTalk-conformant standard A, i.e., you build interfaces
by using standard A. Your business partner, let us assume, subscribes to a different standard, B,
which is also Biztalk-conformant. Using the XSL translation between A and B (available from
the Biztalk repository), you can send XML messages in standard A, which your partner can then
translate from A to B and understand your messages. The success of this depends on the
acceptance of Biztalk and the ability of Biztalk partners to control complexity.

� Manage the XML interfaces properly within your own company. You can build a single
technology-independent logical model of the information needed to drive your business. You
can then map all the different technology pieces onto that logical model. Any data translation
between trading partners is not done directly, but in two steps via the logical business model.
This can help you control the complexity and proliferation of XML.

8.3.5 Sample XML Source and DTD for Purchase Order

The following statement represents XMLSource for a purchase order:

<?xml version="1.0" encoding="UTF-8"?>
<PO>
 <POHeader
 <description>software program</description>
 <paymenttype>Visa</paymenttype>
 <shiptype>UPS</shiptype>
 <fromcust>Zombie Jr</fromcust>
 <PONumber>12567</PONumber>
 </POHeader>

 <Contact>

CHAPTER 8: E-COMMERCE PLATFORMS AND DISTRIBUTED TRANSACTION MANAGEMENT

8-16

 <contactname>Jim Shorts</contactname>
 <contactemail>jimshorts@jimbojerky.com</contactemail>
 <contactphone>212-EAT-JERK</contactphone>
 </Contact>

 <POShipTo>
 <city>New Brunswick</city>
 <attn>CIO</attn>
 <country>USA</country>
 <stateprovince>NJ</stateprovince>
 <street>Anystreet</street>
 <zip>11234</zip>
 </POShipTo>

 <POBillTo>
 <city>New Brunswick</city>
 <attn>CIO</attn>
 <country>USA</country>
 <stateprovince>NJ</stateprovince>
 <street>Anystreet</street>
 <zip>11234</zip>
 </POBillTo>

 <Item>
 <unitprice>$129.99</unitprice>
 <qty>1</qty>
 <inventorynum>37893</inventorynum>
 <needafter>August 29, 2001</needafter>
 <discount>.20</discount>
 <needbefore>September 30, 2001</needbefore>
 </Item>
</PO>

The following DTD describes this source purchase order:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE PO[
<!ELEMENT PO(POHeader,Contact,POShipTo,POBillTo,Item)>

<!ELEMENT POHeader(description,paymenttype,shiptype,fromcust,PONumber>
<!ATTLIST POHeader

paymenttype (Visa|MasterCard|AMEX) #REQUIRED>
shiptype (UPS|FedEx|USPS) #REQUIRED>
PONumber ID CDATA #REQUIRED>

<!ELEMENT description (#PCDATA)>
<!ELEMENT fromcust (#PCDATA)>

<!ELEMENT Contact(contactname,contactemail,contactphone)>
<!ATTLIST Contact
 contactname CDATA #REQUIRED>
 contactemail CDATA #REQUIRED>

MODULE (TECHNOLOGIES)

 © – AMJAD UMAR

8-17

 contactphone CDATA #REQUIRED>

<!ELEMENT POShipTo(city,attn,country,stateprovince,street,zip)>
<!ELEMENT POBillTo(city,attn,country,stateprovince,street,zip)>
<!ELEMENT city (#PCDATA)>
<!ELEMENT attn (#PCDATA)>
<!ELEMENT country (#PCDATA)>
<!ELEMENT stateprovince (#PCDATA)>
<!ELEMENT street (#PCDATA)>
<!ELEMENT zip (#PCDATA)>

<!ELEMENT Item(unitprice,qty,inventorynum,needafter,discount,needbefore)>
<!ATTLIST Item inventorynum id CDATA #REQUIRED>
<!ELEMENT unitprice (#PCDATA)>
<!ELEMENT qty (#PCDATA)>
<!ELEMENT needafter (#PCDATA)>
<!ELEMENT discount (#PCDATA)>
<!ELEMENT needbefore (#PCDATA)>
]>

XML Resources

Information about XML is growing rapidly. Here is a very small list to get started:
� Extensible Markup Language (XML) 1.0 description at http://www.w3.org/TR/WD-xml
� www.xml.com, a very useful Web site for a great deal of information about XML
� ebXML initiative and the XML/EDI group Web sites
� “Xml by Example : Building E-Commerce Applications”, Book by Charles F. Goldfarb Series on

Open Information Management) by Sean McGrath (Paperback, latest edition)
� “Xml for EDI : Making E-Commerce a Reality” Book by Hussain Chinoy, et al (latest edition)
� www.w3schools.com, a very good source for great tutorials

8.3.6 Ecommerce Transaction Processing

Business transactions are at the core of electronic commerce. Examples of typical EC transactions are
purchasing, claim processing, and billing/payment. For business to business activities in ECs, the
importance of supporting highly reliable and secure business transactions is quite obvious. Formally,
a transaction is a collection of operations on a database which has the so-called ACID properties (we
take a closer look at ACID properties in Section 8.10.1.1):
� Atomicity : All of the operations in the transaction must take place, or none must take place. In

practice, if any of the elementary steps that are part of the transaction action fails, then all the
steps must be undone;

� Consistency: The result of performing all the operations in the transaction is to take the database
from one consistent state to another consistent state;

� Isolation: Other users of the database are isolated from any intermediate states of the transaction,
i.e., they may see the state of the database before the transaction begins or after it completed, but
not any state in the middle;

CHAPTER 8: E-COMMERCE PLATFORMS AND DISTRIBUTED TRANSACTION MANAGEMENT

8-18

� Durability : Once all the actions in the collection have completed, the effects endure even in the
event of system crashes.

EC is a mixture of decision support and transaction processing activities. Normally, only a portion of
the core EC activities are transactional. The ACID requirements for these activities are analyzed in
Table 8-1. Two main types of EC transactions are relevant:
� EC transactions between trusted business partners (e.g., suppliers and corporations that enter

business agreements and contracts to buy and sell products). These transactions typically are
large in volume (large amounts of money and goods), introduce medium traffic, and require
rigorous security. These transactions are perfect candidates for Extranets (see Section 8.3.1);

� EC transactions between suppliers and the general public (e.g., Internet shopping malls).

Transactional support is implemented differently in different types of systems. For centralized
mainframe systems, on-line transaction processing (OLTP), has been built for ACID transactions and
has been a backbone of commercial data processing since the early 1970s. Mainframe-based
transaction managers (TMs) such as CICS and IMS-DC/IMS-TM have matured over the years to
provide high performance and reliable services The situation is dramatically different in distributed
environments that characterize EC. In these environments, the approaches fall into the following
categories (see the discussion on Distributed Transaction Management in Section 8.10 for a more
detailed discussion):
� TP-Less, i.e., do not use any transaction management facilities;
� TP-Lite, i.e., use database procedures to handle updates;
� TP-Heavy, i.e., use a distributed transaction manager to handle updates.

Which of these approaches works depends on the type of EC activities being considered. It appears
that each one of these approaches have certain pluses and minuses for EC. The following questions
should be asked before deciding on the approach:
� In what format is the data stored (databases, flat files)? If the data is stored in multiple databases

and flat files, then TP-Lite is not suitable (database procedures only work in RDBMS
environments);

� How many SQL servers does the data reside on? If the application needs to update and commit
data that is stored on multiple servers, then TP-Heavy should be used (database procedures
cannot participate with other database procedures in a distributed transaction).

� What is the requirement for data synchronization? If the data synchronization interval is periodic,
then a TP-Lite solution combined with a data replication server may be useful to handle updates
against replicated data.

� What are the requirements for performance and load balancing? TP-Less works well when you
do not need any transaction processing capabilities. TP-Lite solutions with database procedures
are much faster, on the surface, than the TP-Heavy solutions that require synchronization
between sites. But TP-Heavy solutions provide many sophisticated procedures for dynamic load
balancing, priority scheduling, process restarts, and pre-started servers that are especially useful
for large scale production environment. These features are the main strength of TP-Heavy
products because many of these products have been used over the years to handle thousands of
transactions in production OLTP (on-line transaction processing) environments.

� While the debate between the TP-Lite and TP-Heavy proponents continues, most EC projects are
completely ignoring this whole issue by focusing primarily on EDI and in some sense re-
inventing the wheel. EDI, at best, is a TP-Less approach. Some EC applications are being
deployed by using TP-Lite while large mission critical EC applications, if any, use TP-Heavy
only at back-end mainframe systems. In the meantime, it seems that many small EC applications
are quite happy with TP-Less.

The following areas are of particular interest in transaction middleware for EC:

MODULE (TECHNOLOGIES)

 © – AMJAD UMAR

8-19

� Transaction processing with distributed objects, concerned with performing ACID operations
between objects across machines, introduces many complex issues. The Object Management
Group (OMG) has did the initial work on transaction processing with distributed objects as a
service for its Common Object Broker Architecture (CORBA). At present, most of the imilight in
this area has shifted to Web services.

� Transaction processing with object-oriented databases is concerned with introducing TP Heavy
type of operations on top of OODBMSs. Most of the TP Heavy type of operations are currently
available on relational and hierarchical databases. The fundamental difference is that unlike older
DBMSs that provide read and write operations, the OODBMSs support methods that are rich in
semantics. Most of the work in OODBMS has concentrated on query and modeling aspects. In
particular, transaction management in object-oriented multidatabase systems is receiving serious
attention recently. We will have to see how this technology finds its way in EC. Since
OODBMSs are not common in EC (no surprise here), we will not discuss this subject any further
in this paper. In EC, OODBMSs can be used as "transaction databases" (TDBs) for storing
shopping carts, purchase orders, payments, income receipts, and invoices. In addition, customer
and inventory information are stored in databases to support the order processing activities. These
transaction databases are quickly becoming the foundation of transaction processing and
workflows in EC.

� Integrated End-To-End Business Transactions. This middleware will extend and meld the current
generation of EDI, workflow, and distributed transactions for an end-to-end reliable and secure
business transactions. For example, a workflow system at COI site A will generate an EDI
transaction that will be received by the EDI systems and workflow systems at sites B and C for
automated processing.

Distributed transaction, the core of ecommerce systems, has been an active area of research and
development since the 1970s. A very brief overview of the technical issues involved in distributed
transactions is given in Section 8.10.

EC Activities Atomicity Consistency Isolation Durability

Advertising Not needed Not needed

Not needed Not needed

Browsing and
Selection

May be
needed for
purchase carts

Not needed

Not needed Not needed

 Purchasing Needed Needed Needed Needed

 Billing Needed Not needed

Not needed Needed

 Payments Strongly
needed

Needed Needed Needed

Table 8-1. Is ACID support needed for EC?

.

 Internet Transaction Processing (ITP) -- Making Transactions

"Internet Aware"

Transaction processing (TP) in Internet is the backbone of electronic commerce because all
buying/selling activities involve transactions. However, Internet (unsupervised and free access) is

CHAPTER 8: E-COMMERCE PLATFORMS AND DISTRIBUTED TRANSACTION MANAGEMENT

8-20

contrary to the notion of commercial transactions (highly controlled and supervised). In particular,
TP requires the following:
� Guaranteed message delivery, i.e., once you have sent a message the middleware will be

responsible for delivering the message. If the message is not delivered, the middleware will try
to deliver it again.

� Guaranteed message processing, i.e., once the message is delivered, it is processed correctly
(committed). If a message processing error occurs, the results of processing are rolled back.

� Improved security and privacy i.e., the transactions are protected from unauthorized users.
The transaction activities are also logged for audit trails.

How are these requirements being satisfied in the Internet? First, increased use of message-
oriented-middleware (MOM) provides guaranteed message delivery. Second, Internet TP typically
uses the fat server model in the Internet world because most of the TP processing continues to take
place in the back-end systems with proven TP technology for guaranteed message processing. The
client side may include Java applets that do minimal processing. Third, the servers reside inside
the corporate firewalls for security and the public clients reside outside the firewalls. The clients
and the servers use improved security services such as public/private keys and Secure Socket
Layer (SSL) in the Internet world. These factors, plus consortia such as CommerceNet, will be
vital for electronic commerce. Internet transactions are typically supported by the e-commerce
platforms.

Naturally, Internet Transaction processing (ITP) involves many issues. For example, ITP must deal
with the philosophical differences between running transactions on the Internet, as opposed to the
corporate private network. While the Internet is considered unsecure, OLTPs are private and
controlled by corporations. To strike a balance, the corporations are using the firewall as a basis for
partitioning the ITP services. For example, clients use the Public Internet that is outside the firewall
to submit requests and receive answers. The actual transaction processing is performed inside the
firewall by the application services with the assurances of protection and integrity controls
typically needed for transaction processing.

Tandem introduced iTP (Internet Transaction Processing) in October 1996 to extend its OLTP
products into the electronic commerce arena. The iTP strategy consists of six servers: Tandem iTP
Commerce Server (which enables business-to-commerce transactions on the Internet), Tandem
iTP Media Server (for the distribution of videos, electronic catalogs, music, and large database
content over the Internet), Tandem iTP Messaging Server (it enables businesses to communicate
with each other through X.400 and SMTP), Tandem ITP CTI Server (to support computer
telephony integrated applications), Tandem iTP Intranet Server (it facilitates collaboration by
geographically distant team members), and the Tandem iTP Matrix Server (it allows integration of
legacy and other custom applications). In addition, Progress Software Corporation has also built an
Internet Transaction Processing architecture. Numerous other attempts have been announced and
are on the drawing board.

8.3.7 Electronic Payment Systems -- An Example of Transaction Processing

8.3.7.1 Overview

Electronic payment systems are central to EC because on-line consumers must pay for products and
services. In particular, payments and settlements must be resolved between all partners (customers,
merchants, banks, brokers, etc) quickly and smoothly otherwise the whole business chain is disrupted.

MODULE (TECHNOLOGIES)

 © – AMJAD UMAR

8-21

On-line sellers need to decide how best to support payments for on-line purchases, what type of
currency to use, and what type of electronic fund transfer (EFT) system to use. Electronic payment
systems are the best known examples of transaction processing. The payment is typically handled by
a Payment Server, sometimes also known as Commerce Server. Current approaches to payment
fall into the following broad categories:
� Retailing payments such as credit cards (e.g., VISA or MasterCard), charge cards (e.g., American

Express), or private label cards (e.g., Sears cards).
� Banking and financial payments such as large scale or wholesale payments (e.g., bank-to-bank

transfer), retail or small scale payments (e.g., cash, ATM cards, checks)
� Digital token-based systems that include electronic cash, electronic checks, and smart cards

The first two categories (retailing and banking systems) are not completely adequate for large scale
EC -- they assume that the parties will be in physical presence and enough delays will be built into the
system for frauds and overdrafts to be detected. Most of the current work in EC payments
concentrates on different types of token-based systems. Most common examples of token-based
payment systems are:
� Electronic cash (e-cash). This method involves “digital signatures” that enforce public/private

keys (to be explained later) to identify buyers/sellers. In practice, the buyer establishes an account
with a bank and is responsible to keep enough money in the account to pay for the purchases. The
customer is issued a token for, say $100, and the token value is reduced every time a purchase is
made.

� Electronic checks. This is essentially an automation of paper checks. You open a checking
account and then send your checks through email to the seller. The seller sends this check to the
bank through an accounting server that performs various authentications before clearing the
check.

� Smart cards. These are basically credit cards with microprocessor chips that can hold much
more information than the magnetic stripes of the traditional credit cards. In some cases, the
smart cards enhance the services of traditional cards (traditional cards are evolving into smart
cards that allow processing from multiple accounts) or provide electronic purses (supply quick
electronic cash for buying soda and candy). Smart cards need special smart-card readers.

A variety of token-based payment systems for EC exist that combine various features of e-cash, e-
checks and smart cards. Examples of such systems are:
� Cybercash. This system uses encrypted method for shopping on the internet and supports an

Internet wallet that holds credit cards and electronic checks. Cybercash provides Cybercoin to
pay for small ticket items (25 cents to $10). Cybercash is in partnership with Netscape for these
services.

� Verifone. Verifone is a leader in POS (point of sale) terminals. Verifone supports vWallet for
electronic purchasing and is in partnership with Microsoft (Merchant Server)

� GCTech. GCTech is supported by Global Online Corporation, based in France. This system
interfaces with numerous credit cards and banks for payment.

� SET (Secure Electronic Transactions). SET is a potocol for credit card transactions over the
Internet. It deals with authorization, settlement, etc. Development of SET has been led by Visa
and Mastercard.

� NetBill. NetBill was developed at Carnegie Mellon for low cost, high volume transactions. The
system was initially used to purchase information from digital libraries. A partnership between
Visa and Carnegie Mellon has been formed for pilots.

The following paragraphs will bridge the gap between the customer clicking on the purchase button
to the “monthly check” sent to the on-line merchant.

CHAPTER 8: E-COMMERCE PLATFORMS AND DISTRIBUTED TRANSACTION MANAGEMENT

8-22

8.3.7.2 Merchant Account Providers (MAP)

A number of different web-sites use the label of Merchant Account Provider, or MAP, to describe
themselves. The term MAP refers to any service that will verify the credit card, process the
transaction, and deposit the results into your account. The term is often used loosely, and can refer
to providers of merchant accounts without payment processing, (banks); providers of merchant
accounts and on-line credit card processing, such as independent sales organizations (ISOs); and
providers of on-line credit card processing that refer customers to merchant account providers on
request, such as credit card processors.

The terms MAP, ISO and merchant service provider (MSP) often are used interchangeably. However,
while the terms are similar, services and fees among these providers can vary considerably.

8.3.7.3 Banks

Banks are viewed as the most secure and reliable option, but they are also the most selective. For an
established low risk business it should be easy to open a merchant account in a bank. The bank can
usually arrange a third-party processor to set up a mechanism for accepting credit card payments. U.S.
Bank, for example, uses CyberCash (www.cybercash.com) a company that offers Web-based
payment-processing software. The merchant downloads this software directly from CyberCash, and is
given the option to buy the software or lease it on a monthly basis. This is typical of many bank
merchant account arrangements.

8.3.7.4 Independent Sales Organizations (ISOs)

Most ISOs offer merchant accounts and the ability to process on-line credit card transactions in
exchange for a transaction fee and a percentage of sales. Unlike banks, ISOs are generally more
tolerant of high-risk accounts because they are not monitored or as tightly regulated. In fact, much of
their business comes from companies that cannot obtain merchant accounts from banks directly.

8.3.7.5 Credit Card Processors

These companies are responsible for processing the credit card transactions -- verifying, approving
and then transferring funds securely from one bank to another. They are not considered MAPs per se,
as they do not provide merchant accounts. Instead, they form relationships with banks and ISOs to
integrate payment processing with merchant accounts. For example, many ISOs use the services of
the credit card processors CyberCash and Authorize.NET.

There are three ways to handle credit card transactions:
� Terminal Processing -This method is most suitable for retail stores or businesses that will have

to access the physical credit card of their customer to swipe it on a terminal machine. It is quick
and efficient. All that is required is a swipe of the credit card through the machine and it is
completed.

� Software Processing - The least popular method of processing payments is with a computer
software program. It is very similar to a terminal, but requires the operator to enter the customers
information, and credit card number to process the order. Although it is not possible to swipe the
card, and the numbers must be entered into the software that is installed on the computer, it is
possible nevertheless to store all recurring customers’ information in the program for easy billing.

MODULE (TECHNOLOGIES)

 © – AMJAD UMAR

8-23

� Real-Time Processing - The most popular method of accepting credit cards for businesses on the
web is real-time processing. This type of merchant account will process and charge your
customers’ credit card information automatically by working with the chosen ordering system
(Shopping Cart, Order Forms, etc.). Since the whole process is automatic, this is the most
effortless method available.

The simplest method to handle Credit Card (CC) transactions is to manually verify each credit card
payment through a terminal or software , then pack and ship the goods. If customers are unwilling to
wait for manual verification, or your sales volume is high, a real-time card verification software is
needed. One such tool, ICVerifyi, is available for DOS, Windows, and Unix, and is integrated with
many Web storefront packages. ICVerify collects credit-card information from a Web form and
processes the authorization in real time, depositing the purchase price amount in your merchant
account. ICVerify currently requires a dedicated connection to a bank or credit-card processing
company, although an Internet-based solution called WebAuthorize is available from CyberCash Inc.

Secure Electronic Transaction (SET). An alternative credit-card processing scheme, supported by
card-issuing banks, is the Secure Electronic Transaction (SET) protocol developed by Visa and
MasterCard, and now backed by American Express. Designed for cardholders, merchants, banks and
other card processors, SET uses digital certificates to ensure the identities of all parties involved in a
purchase. SET also encrypts credit and purchase information before transmission on the Internet. SET
is designed to protect the transfer of bankcard payment information over open networks like the
Internet. An application layer security protocol, SET describes the dance between four players:
consumers, merchants, merchant bank, and consumer bank (Figure 8-7). From an end-user's point of
view, the purchase transaction is separated into two parts by SET:
� Purchase information that is sent to the merchant
� Credit card information that is only handled for credit card verification. This information is not

sent to the merchant

8.3.7.6 Merchant Service Providers (MSPs)

The term MSP refers to banks, ISOs, or other institutions that offer financial transaction processing,
usually related to credit card sales. Many MSPs provide merchant accounts; others require customers
to establish them independently.

8.3.7.7 Third party Payment Processors.

Services such as iBill, CCNow and Verza allow merchants to accept credit cards without a merchant
account. Instead, transactions are processed through the third-party providers' accounts (MAPs).
These companies charge a processing fee with each transaction that's higher than the discount rate
charged by most ISOs. However, this is the only fee the merchant incurs. This makes third-party
processing services perfect for small businesses just getting started that lack established credit and
generate less than $1,000 per month (U.S.) in sales. These services are also popular with older
businesses that have poor credit, with non-U.S. businesses and with businesses selling content and
services.

CHAPTER 8: E-COMMERCE PLATFORMS AND DISTRIBUTED TRANSACTION MANAGEMENT

8-24

Merchant

Merchant
Bank

Consumer
Bank

Consumer

Credit card

Figure 8-7: SET Processing

Time to Take a Break Time to Take a Break
• Overview & eCommerce Middleware
• eCommerce Security
• eCommmerce Platforms
• Distributed Transaction Management

Suggested Review Questions Before Proceeding
� What type of middleware services are needed to support e-commerce?
� What role does XML play in e-commerce?
� List the middleware services needed to support online magazine subscriptions.
� Compare and contrast transaction processing with payment systems.

8.4 Security for e-Commerce/e-Business

8.4.1 Overview

The issues of security are of vital importance for EC/EB and need more attention. Basically, security
involves the following aspects:
� Privacy and Integrity: assure privacy of information (i.e., no one other than the authorized

people can see the information) when transmitting it over a network or storing it in a insecure
place. In addition, the integrity of information (i.e., no unauthorized modification) must also be
maintained.

� Authentication: identify for certain who is communicating with you (i.e., make sure that you
are who you are)

MODULE (TECHNOLOGIES)

 © – AMJAD UMAR

8-25

� Authorization (Access control): determine what access rights that person has (i.e., can you only
read given information or can you also update, delete, add information).

� Accountability and Assurance: assure that you can tell who did what and when and convince
yourself that the system keeps its security promises. This includes non-repudiation (NR) -- the
ability to provide proof of the origin or delivery of data. NR protects the sender against a false
denial by the recipient that the data has been received. It also protects the recipient against false
denial by the sender that the data has been sent. In other words, a receiver cannot say that he/she
never received the data or the sender cannot say that he/she never sent any data.

You also need to administer the security system, i.e., define and enforce the security policies that are
consistent across all elements of applications, middleware services, and networks. These, and other
aspects of security, are supported at various levels (network, middleware, application) by using a
wide range of technologies (see Figure 8-8). Security is needed at these different levels since security
at each level fulfills different requirements. Let us briefly review the security at various levels (details
will be given later).

Applications

Middleware

Network

•SSL
•IPSEC (VPN)
•Firewalls

•CORBA Security
•S/MIME

•SET
•Java security
•Database security

Figure 8-8: Levels of Security

Network security protects communication and transactions data. "Firewalls" and "gateways" are
erected to regulate traffic. In addition, the network traffic can be encrypted at packet level (IPSec) or
at the transport level (SSL- Secure Socket Layer). Middleware can also imbed security. CORBA
security is a good example that assures that CORBA applications are secure. In addition, S-MIME
secures email. A variety of security approaches exist at the application level, in which case
authorization controls are used within applications to regulate access to specific data, and
cryptographic infrastructures are built to strongly authenticate users and provide confidentiality.
Examples of application level security is provided by database managers, Java security, and SET
(Secure Electronic Transactions). In particular, applications themselves provide access control and
strong user authentication.

Security must be considered at all levels. Securing a higher layer while keeping lower layers
unsecured makes the system vulnerable to intrusions from the lower layers. In general, lack of
security at a certain layer might compromise the overall system even if other layers are secured.
Consider, for instance, a system where the application data is secure, but is transmitted over an
insecure network. In this case, the overall security of the application could be suspect. Specifically,
application security protects application data (e.g., database security mechanisms allow the data to be
stored on the hosts in a protected manner) and system resources (e.g., Java Security) while SSL
protects data while being transferred on the network.

CHAPTER 8: E-COMMERCE PLATFORMS AND DISTRIBUTED TRANSACTION MANAGEMENT

8-26

A security design approach is needed to include various security issues at different levels. Basically,
it is important that the business logic of a Web application runs on a server and not on the client. The
Web application server can be used to integrate access to resources (databases, etc.), which provides
greater security of the resources. In addition, you should structure your application by using
network filters ("firewalls"). A good design protects the Web server (providing presentation services)
behind an outer firewall, and the remaining servers (supporting business logic) behind a second, inner
firewall. This structure, shown in Figure 8-9, is known as a demilitarized zone, or DMZ. In most
cases, a Web server sits alone in the DMZ, handling requests from the Web and passing them along
to the secure intranet network. The applications and internal business systems behind the inner
firewall contain all the remaining business logic and data of the application. In addition, you can gain
performance benefits by caching frequently requested data inside the DMZ rather than retrieving it
from back-end systems each time it is requested. However, machines in the DMZ are known to be at
higher risk. In addition to DMZ, you also need to consider security of clients. For example, mobile
devices typically need another level of security before they can enter the DMZ.

Demilitarized Zone Demilitarized Zone

Web Web
ServerServer

HTML/XML
Documents

Back-end
Databases

Firewall

Back-end
APPs

Catalogs

Business
Internal Network

ODBC/JDBC

MOM,

CORBA

Security and
Directory Services

Firewall

Customer
Site

Front-end
Integration

(e.g.,
WAP/VOIP
gateway)

HTTP

WAP

VOIP

Web- Internet (HTTP over TCP/IP)

Wireless
Security

SSL

Figure 8-9: Security Design

The balance of this section gives a quick overview of security technologies and presents an illustrative
example to highlight the key issues.

8.4.2 Overview of Core Security Technologies

User logon and password is one of the oldest and still most commonly used technology. In this
case, a system keeps track of who can access that system. This technology enables the use of existing
systems with minimal disruption to existing infrastructure and applications.

Encryption is another technology that has been used for a number of years to mask the messages so
that the interveners cannot see/modify the messages. Due to e-commerce, encryption/decryption has
become a major area of active work. In the simplest case, data is transformed by a key into an
encrypted message. The encrypted message is then transmitted and decrypted on the other side by
using the same key. Encryption/decryption can be performed by hardware and/or software. Modern
computing systems have the ability to implement very sophisticated encryption/decryption
techniques. The same encryption can be used on all data in a system or encryption keys can be more
"personalized". For example, instead of using the same encryption/decryption key on all data from all

MODULE (TECHNOLOGIES)

 © – AMJAD UMAR

8-27

stations in a network, each station or user can use its own encryption/decryption key. A user can have
his or her own encryption card which is inserted into a workstation before the user logs on. This card
encrypts the data before sending it across the network. The encrypted data can be read only by those
users or programs with access to the same encryption key. Encryption is generally discussed in two
different formats:
� Secret Key: In a secret key (also known as symmetric or private) encryption scheme, the same

key is used by the sender to encrypt the message and the receiver to decrypt it. While secret key
encryption is usually very fast and efficient, the problem is with key management. In other
words, since the sender and receiver have to agree on the same key, sending the key from one
side to the other might compromise it.

� Public key: In a public key (asymmetric) system, the encryption key E and the decryption key D
are different - hence the name "asymmetric". Each user has a pair of keys, a private key D that he
keeps secret and a public key E that he publishes. When sender Bob needs to send a message to a
user Joe, he encrypts the message with Joe's public key E(J) . This encrypted message can only
be decrypted with Joe's private key D(J). Therefore if this encrypted message is delivered to user
Pat who does not have key D(J), then Pat cannot decrypt it. Thus when Joe receives the message,
he can decrypt the message by using D(J) and read the message. Notice that in this key system
the decryption key is private and not transmitted over the network. While public key systems
solve the problem of key management, they are usually significantly slower than private key
systems. The RSA (Rivest, Shamir and Adleman) algorithm, developed in 1976 is by far the
most wildly used public key encryption algorithm.

Digital signature is used to authenticate the source of a message. It is essentially the same as a public
key system except that the order in which the keys are applied is reversed. A sender “signs” the
message by applying his private key to it. The sender sends the message and the signature to the
receiver. The receiver checks the signature by applying the sender’s public key to it. If the receiver
gets the original message back, he is sure that the message was signed by the sender’s private key,
and therefore, was sent by the receiver himself. In essence, a digital signature is a block of data
created by applying a cryptographic signing algorithm to some data using the signer's private key.
Digital signatures may be used to authenticate the source of the message and to assure message
recipients that no one has tampered with a message since the time it was sent by the signer

Message Digesting is used to make sure that a certain message was not changed along the way
between the sender and the receiver. A message digest algorithm produces a fingerprint of the
message, by applying a hashing function to it. The receiver can check for the integrity of the message
by reapplying the hash function and comparing with the original fingerprint. The hash functions used
in these schemes are such that the fingerprint changes dramatically if a single bit of the message
changes.

A digital certificate binds an entity's identification to its public key and is issued by the Certification
Authority. Digital certificates, based on the X.509v3 standard, enable Internet applications and other
users to verify the identity of an entity. Unfortunately, certificates produced by one vendor product
may not interoperate with other vendor's because X.509 does not define the formats of the certificate
entries and other necessary provisions. PKIX, the X.509 standard by IETF, [who’s this ?] defines the
contents of public key certificates and is intended to resolve these interoperation issues.

8.4.3 Information Protection (Privacy and Integrity)

Information must be protected and its integrity maintained at least at two levels: a) the sites where it
exists, and b) when it is transmitted. In addition, the encryption keys themselves need to be protected.

CHAPTER 8: E-COMMERCE PLATFORMS AND DISTRIBUTED TRANSACTION MANAGEMENT

8-28

Site Protection. Information must be protected at the sites where it exists. Access control (allowing
authorized users to access needed data) protects data at various sites. Most database managers have
security features that allow only authorized users to access needed data. In some cases, data is
encrypted and stored for additional security. An important aspect of site protection at present is Java
Security. Security of Java code has been an area of concern for a while. The current Java security is
defined at the following levels:

� Java1.1’s security management system -- All local code is trusted. All remote code is
untrusted, unless it is digitally signed by a trusted source. Untrusted code runs in a “sandbox”,
and has limited access to local system resources.
� Java 2’s security management system -- Local and remote code are checked by the same
security management system. It supports fine-grained, flexible and easy-to-specify security and
permission policies.

b) Transmission Protection. When data must travel outside of a secure system environment, it needs
to be protected so that the policies governing its use cannot be violated. Secure communications,
ensuring data privacy, data integrity, and origin authentication are an important aspect of information
protection. Examples of the technologies used for secure communications are:
� Firewalls -- the network filters that police "who" enters and leaves an enterprise network and

"what" gets in and out. A firewall is essentially a software package that is installed on network
routers. This software checks each IP packet and determines if it should enter the system.
Firewalls provide a logical and physical separation of the public Internet and internal IT systems.
A good security design generally has two firewalls: an outer firewall that exposes some services
to the outside world and a second, inner firewall, that keeps the inner resources. The zone
between the two firewalls is known as a demilitarized zone, or DMZ.

� SSL - The Secure Sockets Layer (SSL) protocol uses encryption and authentication techniques to
ensure communications between a client and a server remain private and to allow the client to
identify the server and vice versa. SSL runs on top of TCP/IP and manages secure messaging on
the network. SSL client and server negotiate encryption scheme and key size. SSL is currently
used heavily to protect the traffic between Web clients and servers. It uses RSA (Rivest, Shamir,
and Adleman) Public encryption for key session negotiation and DSA (Digital Signature
Algorithm) for session encryption. See the sidebar "SSL" for additional information.

� VPN and IPSec- Virtual Private Networks (VPN) are private networks (e.g., networks internal to
corporations) that use public communication infrastructure. In other words, you set up a private
network over a public network by using encryption. VPNs use IETF IPSec (RFC 2401) and
related standards to transport encrypted messages over shared networks. IPSec provides security
at the packet level, instead of security at application layer. It encrypts and signs Headers and/or
Data parts of the IP Header. It provides security without requiring changes to applications and
thus is suitable for Virtual Private Networks (VPN). VPN differs from SSL in that it creates a
secure channel between two TCP/IP hosts over which multiple TCP/IP connections can be
established. Each TCP/IP session itself may or may not use SSL. See Section 8.3.1 for additional
discussion of VPN.

� S/MIME - Most e-mail client and server programs using Internet systems such as SMTP send e-
mail as clear text. The Secure Multipurpose Internet Mail Extensions (S/MIME), a specification
for secure electronic messaging, can be used to prevent the interception and or forgery of e-mail.

� Middleware Security - Web security is a good example of protection at middleware level. This
security can be divided in terms of:
� Web client security
� Web Server security

� SET - The Secure Electronic Transaction (SET) protocol, developed jointly by Visa,
MasterCard, IBM, and other technology providers, is used to protect the transfer of bankcard

MODULE (TECHNOLOGIES)

 © – AMJAD UMAR

8-29

payment information over open networks like the Internet. This is an application layer security
protocol.

c) Key Protection. In addition to secure communications, protection of the keys that in turn are used
to protect the assets is also important. Private keys and shared secrets, once acquired, must be
protected. End-to-end security must include consideration of the security of the end user device.
Private keys stored on a personal computer disk file may be stolen via access to the file system or
outright theft of the device. Security can be enhanced by the use of smart cards. Another approach is
to use a security chip embedded in end user systems. In addition, server-side hardware devices can
provide tamper resistant key storage as well as assistance for encrypting and decrypting messages and
public/private key operations, etc. that require heavy computational load.

Basic Security Services: SSL and Digital Cetificates

At present, most Web browsers and servers use Secure Sockets Layer (SSL) technology to provide a
safe way to transmit sensitive information, such as credit card numbers, on-line banking, email
messages, surveys and other personal information.

The SSL protocol provides data encryption, server authentication, message integrity, and optional client
authentication for a TCP/IP connection, allowing for the secure transfer of sensitive information over
the Internet. SSL consists of software installed in browsers and on servers and can be obtained by
subscribing to a Secured Service Provider such as ssl.com or by obtaining a Server Certificate from
ssl.com and installing it on an existing secured server.

All major browsers and servers today are "SSL capable". SSL technology was developed by Netscape
Communications Corporation and has become the industry-standard method for protecting web
communications.

SSL Overview.

SSL uses public key encryption to provide security at the packet level. At the receiving end, SSL
provides Server Authentication Message Integrity checks.

The basic public key scheme assumes that both parties have a private/public key pair, and that they can
trade these pairs. Then, they use their private keys to encrypt messages to be sent, and the public ones
to decrypt received messages. Additionally, message integrity can be verified when checksum is
generated for each packet, signed with the private key, and sent along with the packet.

However, this kind of encryption is too time-intensive. A faster encryption scheme consists of
encrypting the main part of the packet, and then sending the key used to encrypt the packet. This key is
itself encrypted using the private key and so is well-protected. This way, the heavy-duty encryption is
used only for the 'session key', which is very short, making the whole transaction close in speed to a
non-encrypted one.

SSL adopts this latter scheme. A 'master key' is generated using some random data. The master key is
used to generate a session key for each session, from which a client write key and a server write key are
generated (you read with the other party's write key). The server's public key is used to encrypt the
master key during the initial handshake; from then on, the packets are encrypted with the server or
client write key, depending on who is sending it, a digest is taken, and the whole thing is finally
packaged up with a session number.

CHAPTER 8: E-COMMERCE PLATFORMS AND DISTRIBUTED TRANSACTION MANAGEMENT

8-30

SSL comes in two strengths, 40-bit and 128-bit, which refer to the length of the "session key" generated
by every encrypted transaction. The longer the key, the more difficult it is to break the encryption code.
Most browsers support 40-bit SSL sessions, and the latest browsers, including Netscape Communicator
4.0, enable users to encrypt transactions in 128-bit sessions - trillions of times stronger than 40-bit
sessions. Global companies that require international transactions over the web can use global server
certificates program to offer strong encryption to their customers.

SSL use in practice.

In order to use SSL between an individual using a web browser and a business hosting a website on a
secured server, the following must occur:

A Root Certificate must be installed on the individual's local web browser. Certificate Authorities (CA)
such as ssl.com, provide Root Certificates for public downloading by individuals.

A business must have a Server Certificate installed on their secured server. There are two ways a
business can obtain access to a secured server: they can subscribe to a Secured Service Provider (SSP)
such as ssl.com, or they can obtain a Server Certificate from a CA (Certification Authority). In the latter
case, the business must first ask their Internet Service Provider (ISP) to generate a Certificate Signing
Request (CSR), and then, the CSR must be submitted to the SSP. The SSP will verify that the business
is legitimate and will issue the business a Server Certificate. This certificate is then installed on the
secured server, and SSL transactions are then enabled.

Digital certificates encrypt data using Secure Sockets Layer (SSL) technology. Because SSL is built
into all major browsers and web servers, simply installing a digital certificate turns on their SSL
capabilities.

For further reading: the SSL site (www.ssl.com) has comprehensive documentation on the mechanics
of SSL and certificates.

8.4.4 Authentication and PKI

In e-commerce/ebusiness, you need to authenticate the consumers who buy your products or services,
employees who access internal systems from remote locations via the public Internet, or business
partners who are tightly integrated into your supply chain and ERP systems.

For authentication, many applications choose to make use of one-time passwords. However, the use
of such one-time passwords often requires the deployment of token cards -- an expensive and labor
intensive effort. This is why software-based solutions are more popular. Most systems enforce
authentication by developing a session key that establishes the identity of partners at session start and
is used throughout a session. But then this session key needs to be encrypted. Should a private or
public key system be used? Given the advantages and disadvantages of these approaches (private key
is efficient but not very secure and public keys are not efficient but secure), in practice, a public key
system is used to exchange the session key between the two sides. Then this key is used in a private
key system only for that session. Many current systems, such as SSL (Secure Socket Layer) uses this
technique. See the sidebar "SSL" for more details.

Many applications use cryptographic software to incorporate public-key cryptography for encryption
and authentication. A number of such software packages exists, including the following:

MODULE (TECHNOLOGIES)

 © – AMJAD UMAR

8-31

� Kerberos (http://ww.mit.edu/kerberos/), a cryptographic authentication scheme using a third-
party authentication server to grant cryptographic "tokens" that authenticate users to a given
service. Kerberos is an open standard designed to provide strong authentication by using secret-
key cryptography. Used primarily for secure interoperation of existing systems, Kerberos is used
for user authentication.

� Entrust (www.entrust.com), Entrust.net, a subsidiary of Entrust Technologies that offers a
portfolio of service solutions to securely manage e-business transactions. Solutions include secure
e-business transactions from e-commerce Web sites to interactive cell phones. entrust also
recently entered the secure transaction business for wireless. Entrust.net manages personal, web
and WAP (for wireless) certificates. In particular, the new WAP Server Certificates are digital
certificates that enable WAP servers to establish Wireless Transport Layer Security (WTLS)
sessions with mobile phones and micro-browsers that support the WAP standard.

� PGP (Pretty Good Privacy), a popular program available on the Internet that uses public-key
cryptography to authenticate users to each other without the use of certificates.

� A number of public-key based cryptographic infrastructure tools, such as the Microsoft and
Netscape Certificate Servers, which allow for the inclusion of public-key certificates in various
applications.

It is important to understand the role of Public Key Infrastructure (PKI) in authentication.
Authentication mechanisms include a wide range of options such as user ID and password, one-time
passtokens, digital certificates, and biometrics. These mechanisms are typically part of Public Key
Infrastructure (PKI). PKI capabilities help create and manage asymmetric cryptographic keys or
public/private key pairs required by applications. The following major PKI components provide the
necessary capabilities to establish, maintain, and protect trusted relationships.

The Certification Authority (CA) creates and signs digital certificates, maintains a list of certificates
that have been revoked before the expiration date (certificate revocation lists), makes these certificates
and revocation lists available, and provides an interface so administrators can manage certificates.

The Registration Authority (RA) evaluates the credentials and relevant evidence that a person
requesting a certificate is who they claim to be. The RA approves the request for issuance of a
certificate by a CA. CA and RA functions are provided by a wide range of PKI providers such as
Tivoli SecureWay Public Key Infrastructure

 Directory Services, based on the Lightweight Directory Access Protocol (LDAP), define and
implement a common schema for users and groups. The directory service is the point of integration
for user authentication among products in many security systems. This has a positive effect on
reducing administrative costs and complexity. A user can be defined once within an enterprise, and
information about that user can be accessed in a consistent manner by multiple different applications.
By comparison, in today's environment, common objects must be defined and administered on a per-
application basis.

8.4.5 Authorization and Access Control

Authorization is concerned with assuring that only authorized users can access a particular system
privilege. Authorization relies heavily on access control -- the process checking whether an
authenticated user’s privileges permit the execution of a particular operation on a particular protected
resource. For example, can Alice withdraw money from account zc-11-35. The access control is
typically enforced through access control lists (ACLs) that may look something like the following:

User name Resource Name

CHAPTER 8: E-COMMERCE PLATFORMS AND DISTRIBUTED TRANSACTION MANAGEMENT

8-32

Joe Payroll

Sam Accounting

Tim Inventory control

Scalability of ACLs is a major issue because modern applications may scale to dozens or hundreds of
Web servers and potentially tens of millions of end users. The administration of ACLs can be very
complex if they must be configured on each Web server system. Authorization to back-end data or
subsystems must be handled as well, including systems that have existing authorization mechanisms.
In addition, authorization to other key e-business resources such as objects and message queues must
be incorporated.

Due to the complexity of managing ACLs, many applications provide access control on their own
because it is not always possible to provide intra-application access control using Kerberos or public-
key schemes. Some products have been released that make use of the Distributed Computing
Environment (DCE) access control policies. These products, such as HP's Praesidium, make use of
the fine-grained access control capabilities of DCE and link them to the deployment of Kerberos
within a system. Other products such as the Tivoli Secureway Policy Director provides a centralized
authorization service that is the point for administering access controls for Web servers, Web
applications servers, firewalls, EJBs, and other systems.

8.4.6 Accountability and Assurance

 A system needs to log all attempts to access corporate resources to ensure that the system is secure.
This logging can also facilitate management decisions by allowing analysis of use patterns. A
comprehensive, distributed logging and audit facility for Internet-based applications is needed.

In essence, an e-business must provide assurance that the infrastructure and application resources,
including systems, networks, and data, are protected with regard to confidentiality and integrity. This
includes protecting the enterprise network and systems from various forms of attacks, and also
requires that the communications between the consumer or business partner and the application is
secure and confidential. A solution architect can choose from the set of mechanisms discussed so far
to satisfy the specific security requirements for the solution. Two additional considerations are:
� Intrusion detection - These services emphasize early detection of intrusions. Should a DMZ,

extranet, or any internal system be compromised, you need to detect that fact early, and take
necessary actions to prevent the launching of a further attack into the private network.

� Virus detection - Computer viruses can enter your systems in a variety of ways: via e-mail
attachments, from software installs, from files brought by employees from home, etc. They can
quickly proliferate from system to system, user to user and cause damage to data, applications
and networks. Viruses must be identified quickly, isolated, and damage repaired.

8.4.7 A Security Example

Let us go through a simple customer scenario to illustrate elements of a successful secure e-business
solution.

A fictitious investment firm, Get Rich Quick (GRQ), wants to allow its customers to access and
update their account information and use some of the firm's financial analysis tools via the Internet.
The goal of this project is to reduce the cost of customer service. While there are many design areas at

MODULE (TECHNOLOGIES)

 © – AMJAD UMAR

8-33

play in this scenario, we will focus on security and how it impacts the design, deployment and
management of the solution. The main restriction is that the cost of the proposed solution must be
less than the projected savings in customer service.

GRQ has identified several main risks and defined mechanisms to address them. Here is a summary
of three:

Risk1:
� Risk statement - Information flow, including passwords and account data, over the Internet is not

secure and may be stolen.
� Mechanisms to address the risk - Ensure there are secure communications between the end user

and GRQ. Make sure that all network traffic between GRQ and their customers is protected using
SSL at a minimum.

Risk2:
� Risk statement- Hackers may attempt to access the GRQ system by trying user ID and password

combinations to impersonate an existing customer.
� Mechanisms to address the risk - Ensure that the system can determine that users are who they

say they are. Implement strong mutual authentication using PKI. Provide smart cards with
certificates and smart card readers to all customers who sign up for the service and encourage
their use. Provide X.509 certificates on a browser as an alternative.

Risk3:
� Risk statement- Hackers may try to attack and penetrate the GRQ network, and infect the system

with a computer virus, etc.
� Mechanisms to address the risk - Protect the enterprise network and, where possible, the

customer end user system from intrusion and attack. Provide antivirus software for end users who
sign up for the service. Install antivirus and intrusion detection software in the enterprise.
Implement a DMZ between the company intranet and the public Internet.

The application architecture uses a logical 3-tier Web application model with a thin HTML-based
client that uses Java and Enterprise Java Beans (EJBs) for access to the existing customer account
database. Based on this overall architecture, the following security-related design decisions were
made:
� All information about users and groups is stored in a centralized directory service, deployed in

the intranet, to decrease complexity and make the application easier to administer when users are
added or deleted.

� A centralized authorization service is used to make it easier to define and manage the permission
policy for access to programs, data, and other resources. It is deployed in the intranet. A trust
relationship among the systems used by the application is used.

� The end user is required to sign on (log in) to the system once and only once. All system
interaction is transparent to the end user. Credential mapping is used, where necessary, to
implement single sign on.

� The system is designed to fit into the DMZ model. The application's presentation logic is
deployed within the DMZ and the application's business logic is deployed within the intranet.

� GRQ will not issue certificates. A 3rd party Certificate Authority that implements Public Key
Infrastructure or comparable software is used for this function.

� GRQ will log and examine attempted security breeches

Next step is to define and configure the principals and objects for each system, and their permissions,
in a consistent fashion. A Security Manager (SM) is used in this step to a) define the set of Web pages
and objects that will be managed, b) enroll end users / groups and server principals, c) define the
permission policy for Web pages and objects, and d) add the credential mappings required for single

CHAPTER 8: E-COMMERCE PLATFORMS AND DISTRIBUTED TRANSACTION MANAGEMENT

8-34

signon support to existing systems. Many SMs are commercially available. IBM's Security Policy
Director is an example. The firewall systems are configured on each side of the DMZ. The outer
firewall (router) allows only HTTP/HTTPS protocol flows, and the inner firewall allows only IIOP,
and LDAP protocol flows.

Security
 Manager
Proxy

 Protected
Page

HTTP

GRQ
Home
Page

Web Web
BrowserBrowser

GRQ.comGRQ.com
SiteSite

WebWeb
ServerServer

CustomerCustomer
SiteSite

GRQ Internal GRQ Internal
SystemsSystems

Firewall
Firewall

DMZ

Smart
Card
Reader

1

2

3

3

4

4, 5,10

 SSL
Account Account
BalanceBalance
ApplicationApplication

6, 7
10

Security
Directory

8

Accounts
balance

9, 10

Figure 8-10: Security Flow Example

Figure 8-10 shows how the security architecture, when combined with the application architecture,
results in a trusted e-business solution. The end-to-end flow sequence is as follows:

 1. Pat is a GRQ customer. She inserts her Smart Card in the Smart Card Reader attached to her PC
and enters her PIN number to enable her system. Pat then dials into her ISP for connection to the
Internet and starts her Web browser.

 2. Pat accesses the GRQ home page by typing http://www.grq.com. The HTTP request flows
through the GRQ outer firewall / router to the Security Manager (SM) proxy.

 3. The SM proxy inside the DMZ receives the HTTP request and determines that the GRQ home
page is not protected, so the Web page is sent to Pat.

 4. This home page includes a link to a protected page. By linking to this page, an SSL session is
established between the browser and the SM proxy. As part of SSL processing, and to identify Pat to
the SM proxy, the browser accesses Pat's certificate and private key from the smart card, which was
activated in Step 1. (Note that in addition to certificates, user IDs and passwords and other third-party
authentication mechanisms are also supported in typical SMs.)

 5. The SM proxy sends Pat's certificate to the SM, to establish Pat's logon. The SM proxy then
uses its copy of the SM access control list (ACL) to determine whether Pat has the permissions
needed to access the protected Web page that lists customer applications.

 6. The "Welcome" Web page is sent to Pat. It contains links to available applications. Pat clicks on
the "Account Balance" application link which sends an HTTPS request to GRQ.

 7. The SM proxy ensures that Pat is authorized to obtain her account balance. Once authorized,
Pat's user credentials to GRQ-Accounts-Application are obtained and the HTTPS request is

MODULE (TECHNOLOGIES)

 © – AMJAD UMAR

8-35

forwarded to GRQ-Accounts-Application, including those credentials. This credential mapping
capability provides single sign-on.

 8. GRQ-Accounts-Application issues a call to the Security Directory running behind the inner
firewall to authenticate Pat. This request flows through the inner firewall. This establishes Pat's logon
to GRQ-Accounts-Application.

 9. GRQ-Accounts-Application evaluates if Pat is authorized to execute the needed method. Several
additional checks are made to make sure that Pat is authorized to access this information. Finally, an
SQL query is issued and run after the database manager authenticates the credentials and authorizes
access.

 10. The results of the query are returned. The data is passed back through the systems to GRQ-
Accounts-Application running in the DMZ where the data is formatted into a Web page which is sent
to Pat over the SSL session.

Security For a Retail Sector Supply Chain - An Example

 Here is an example of security considerations for a retail sector supply chain.

Corporate Security. Data access profiling according to registered company structure is provided.
Specific users are identified as designated responsible participants. This ensures legitimate transactions
and prevents unauthorized users.

User Security. Each individual participant is restricted to their own data. Depending on the type of
transaction, users can choose either public or private access.

Transactional Security. Transactions require approval from both parties to be completed. This ensures
that erroneous transactions are not completed.

Network Security. Browser connections to Web servers and apps use HTTP and secure HTTP for
executing business transactions. The standard environment authenticates and encrypts communications
with 128-Kbit Secure Sockets Layer (SSL) digital certificates.

8.4.8 Summary of Security

A wide range of security technologies ranging from public/private key encryptions to digital
certificates and ACLs are currently available to address the authentication, protection, authorization,
and accountability aspects of security. Table 8-2 shows a mapping of various security technologies to
security needs (e.g., which technologies address which needs). We will discuss this table in detail in
a later chapter..

Table 8-2: Security Considerations - Mapping Technologies to Needs

Technologies Protection,
Privacy, and
integrity

Authentication Authorization/acc
ess control

Accountability

(Non-repudiation)

Encryption X X

CHAPTER 8: E-COMMERCE PLATFORMS AND DISTRIBUTED TRANSACTION MANAGEMENT

8-36

Password
protection

X X

Digital signatures X

Message Digest X X

Digital certificates X X

Firewalls X

SSL X

IPSec X

Kerberos X

ACLs X

 Audit trails X

Time to Take a Break Time to Take a Break
• Overview & eCommerce Middleware
• eCommerce Security
• eCommmerce Platforms
• Distributed Transaction Management

Suggested Review Questions Before Proceeding
� What are the important security issues in e-commerce?
� What type of security services and protocols are needed to support e-commerce security?
� What is PKI and why is it needed for e-commerce?
� What are commerce servers (explain through examples)?
� If you had to design a new security server, what would it look like (architecturally) ?

.

MODULE (TECHNOLOGIES)

 © – AMJAD UMAR

8-37

8.5 Electronic Commerce Platforms:::: Packaging EC Middleware

8.5.1 Conceptual View of EC Platforms

Ecommerce, even just for C2B, requires a wide range of IT infrastructure services that include
network services, general purpose middleware services such as Web, and EC specific services such as
e-payment and EDI. It would be ideal if all the IT infrastructure services could be packaged together
to support EC. This a commercial reality at present -- the IT infrastructure services needed for EC are
being packaged together as electronic commerce platforms (also known as commerce servers).
Many vendors, as we will see shortly, such as IBM, Microsoft, Oracle, Netscape, and Sun are
providing such integrated EC platforms that can provide almost all services (both transactional and
non-transactional) needed for EC. At a conceptual level, the EC platforms consist of the following
building blocks:
� Network and operating system services
� Core middleware (e.g., web)
� EC specific middleware
� Management and support services

Electronic commerce over the Internet is relatively new at present and will evolve through various
stages. A possible scenario of evolution is presented in Table 8-3. In the earlier stages, enterprises
utilize services such as email and EDI. As more business processes are automated, and more business
information is generated and processed in electronic form, additional services such as decision
support and workflow between organizations is needed. Each stage will introduce new challenges in
the infrastructure (i.e., middleware, networks, management and support services). Many business
communities are currently in stage 1 of EC, although some have started experimenting with stage 2
applications. Most of the growth will be in the middleware, especially in transaction management. It
can be seen that most of the growth will be in the middleware, especially on transaction and flow
management between organizations. [The table shows 3 levels; here you refer to stages. Probably
need to pick one term & stay with that.

The terms "Commerce Server" and "Application Server" are used interchangeably by some e-
commerce platform providers. Keep in mind that an application server (also known as app server) is
a platform for development, deployment, and management/support of general Web-based
applications. A Commerce Server is an Application Server that specializes in e-commerce
applications, thus it is a special case of the general class of application servers.

Table 8-3: Types of Commerce Servers (EC Platforms)

 Typical
Examples

Main
Applications
and Services

Network
Services
needed

Middleware
Needed

Management
and Support
Services
Needed

Simple
Ecommerce
(Level 1)

Simple business to
business
commerce

• Mainly POs
and invoices

• Limited
advertising and
browsing

Internet + VAN Email, EDI,
Enhanced
Fax, File
transfer

Security

CHAPTER 8: E-COMMERCE PLATFORMS AND DISTRIBUTED TRANSACTION MANAGEMENT

8-38

 Typical
Examples

Main
Applications
and Services

Network
Services
needed

Middleware
Needed

Management
and Support
Services
Needed

Professional
Ecommerce
(Level 2)

Large electronic
shopping malls,
Military
procurement
systems

• Increased
advertising and
browsing

• Integration
within
organizations

Extranet Integration of
workflows,
enhanced
EDI, email,
legacy system
integration,
distributed
objects

Directory
Fault
management

Advanced
Ecommerce
(Level 3)

Electronic
Commerce
“Brokers”

• Seamless
browsing and
advertising

• Integration
and flow of
work across
organizations

Extranet Distributed
Transaction
Processing,
Decision
support,
Mobile
computing,
Intelligent
Agents,
Real time
multimedia

QoS

8.5.2 Conceptual Architecture of eCommerce Platforms

Figure 8-11 shows a conceptual view of a generalized ecommerce platform. At the core of this
architecture is the ecommerce server that provides the set of APIs, command support, macros,
daemons for dynamic web page generation, and multi-hosting for accommodating multiple virtual
stores on the same machine. The ecommerce server is typically based on a web server such as Apache
or IIS. Another important component of ecommerce platforms is a commerce database that houses
the transactional (e.g., order information, shipping information) as well as non-transactional (e.g., tax
calculation tables) catalogs and databases. These databases typically come with native support for
vendor supplied databases (e.g., IBM DB2, Oracle Database, or MySQL), and can be optionally
stored in any other ODBC compliant databases. Other components, also built into general purpose
commerce servers, are:
� The Internet connection secure server establishes secure sessions across the Internet between the

end user's browser and the ecommerce applications.
� The commerce administrator provides a suite of tools that are used to create and administer

commerce sites and virtual storefronts.
� The commerce utilities support import of data into catalogs from external sources such as supplic

(supplier ?) stores, and legacy data interfaces for access to business applications ("Merchant
Legacy Systems") such as inventory and billing.

� The commerce companion products support related products such as Secure Electronic
Transaction (SET) payments, catalog workbench for creating and maintaining catalogs, data
mining tools, and document flow systems.

The conceptual view of ecommerce servers presented in Figure 8-11 can be customized and mapped
to many commercially available ecommerce platforms available from IBM, Microsoft, Oracle and
others. Some general trends are worth noting. For example, SOA (Service Oriented Architectures)

MODULE (TECHNOLOGIES)

 © – AMJAD UMAR

8-39

and WS (Web Services) are dominant. In addition, many ecommerce are becoming available as open
source.

ClientClient
eCommerceeCommerce
Server Server

EnterpriseEnterprise
Information Information

SystemsSystems
(Corporate (Corporate
databases, databases,

ERPsERPs,,
LegacyLegacy

Applications)Applications)

ClientClient

eCommerceeCommerce
UtilitiesUtilities

eCommerceeCommerce
AdministrationAdministration

BackBack--endend
Interfaces &Interfaces &
CoordinationCoordination

Front-end
(Clients)

eCommerce
Platform Back-end

C
on

n
ec

tio
n

M
an

ag
er

s
C

on
n

ec
tio

n
M

an
ag

er
s

eCommerce
Database

Figure 8-11. Architecture of a Generalized Commerce Server

8.5.3 Examples of eCommerce Platforms

Many ecommerce platforms have appeared in the marketplace since the late 1990s. Here is a list of
the most common ones (please do a Google search to find the exact links plus more platforms):
� Oracle E-Commerce Platform
� Microsoft Internet Commerce Strategy
� IBM WebSphere
� Netscape EC Servers and the Sun iPlanet Platform
� Open Market Commerce Server
� BroadVision Commerce Platform
� Miva Merchant Server

While different vendors choose different technologies to implement their commerce servers, the
following trends are worth noting:
� Most commerce servers are using Web Services as the key middleware technology
� SOA-enablement is a common strategy used in most commerce servers.
� Many commerce servers are Java based, but .Net based commerce servers also abound
� Many commerce servers are becoming available from the open source community

CHAPTER 8: E-COMMERCE PLATFORMS AND DISTRIBUTED TRANSACTION MANAGEMENT

8-40

8.6 Case Studies and Examples

8.6.1 eCommerce for Small Businesses

Graduate students at the University of Minnesota conducted a study to learn about how small
businesses use the Internet in their business (course title: "Topics in Design, Housing and Apparel:
Global E-commerce", Fall Semester 2003). The students conducted 30 minute telephone interviews
of Minnesota entrepreneurs to collect this information. The companies interviewed are listed below
(the results of each interview can be reviewed by clicking on the links):
 Andrej’s European Pastry

EdVisions Cooperative
Helios Nutrition
Hunt Utilities Group
Madonna Peltier-Yawakie
Midwest Wireless
Philip Drown Companies
ProTainer
RBJ’s Restaurant
Rolco Inc
Rural America Partnership
Sawbill Outfitters
Todd County Emall
Tri County Hospital
Wild Rose Farm Organics

8.6.2 International Racehorse Transport Uses eCommerce

International Racehorse Transport (IRT) transports more than 5000 horses each year around the
world. Established in 1972 and headquartered in Melbourne, IRT has offices in Chicago, Auckland
and LA.

The biggest challenge facing IRT was document management and profiling of each horse being
transported. In fact, transportation of each horse internationally is a transaction that has to satisfy
multiple customs regulations. A great deal of duplicate work and time consuming administration
required employees to work long hours to keep up with the administration required by customs
authorities around the world. To decrease the labor costs and time taken for each job, IRT developed
a centralized database application which centrally held all information about each horse. This
information is stored on servers based in the Melbourne offices and is accessible via intranet by
international offices. The application is a centrally housed Lotus Notes database that can be accessed
by all employees around the world, giving them access to important information required on horses
being shipped to their market. The data management for each horse transported is shown below.
� The horse details are entered into an interface at the origin when the horse is registered for

transportation.
� The data is stored in a database on a central server in Melbourne.
� The transport market to where the horse is being sent can review details and change what is

relevant to that market.
� All parties can login and obtain the required forms to meet customs requirements.

MODULE (TECHNOLOGIES)

 © – AMJAD UMAR

8-41

� Needed transactions for different customs offices can be executed when a horse is transported
over international borders.

The overall objective of this document management system is to increase staff morale and improve
overall job satisfaction. IRT estimates 40% overall savings due to reduced administration work
required for each horse. The expected savings are around $750,000 per annum due to the internal
document process improvement. The development of the software application cost IRT about
$200,000, the hardware cost about $75,000 and the telecommunications costs amounted to $20,000.
IRT is also exploring opportunities to integrate an online booking application for clients to further
save operational costs.

Reference: www.mmv.vic.gov.au/Assets/231/1/InternationalRacehorseTransport.pdf

8.6.3 HD Chauffeur Rides Uses eCommerce

HD Chauffeur Rides, an Australian company, conducts fun rides around Victoria on Harley Davidson
motorcycles. HD Chauffeur Rides is a sole proprietor business with 35 experienced contract
chauffeurs who conduct the rides. John Karmouche operates the business from Blackburn in Victoria,
Australia.

Using photography, text and video catering for both narrowband and broadband, a website was
created to demonstrate the HD Chauffeur Rides services. Booking is done online, by email or through
the phone. In addition to yellow pages directory listings, brochures and business stationary, HD
Chauffeur Rides’ business is generated through the website’s ability to be found by major search
engines such as Google and Yahoo. The website demonstrates the available tours, motorcycles and
quality of service by using a photo gallery as well as a streaming video of a motorcycle tour around
the city. The rides can vary immensely in duration and distance and are priced after the customer
requirement is understood through an interactive session.

HD Chauffeur Rides generated approximately $65,000 in sales as a result of visitors using the
website. After the cost of goods used at $16,000 the net sales were around $48,750. The business was
able to save $28,700 in operating expenses including two major expenses of rent, approx. $15,000
and wages, approx $13,000. The overall return on investment was around $65,290. A content
management system will be implemented to automate the offers on the website. HD Chauffeur Rides
is also planning to get into online marketing using search engines, pay-per-click advertising etc. They
plan to increase bookings using the pay-per-click advertising method.

Reference: www.mmv.vic.gov.au/Assets/230/1/HDChauffeurRides.pdf

8.6.4 Wholesale Order & Reporting System

This case study is about a company that operates a large Ice Cream franchise business in the Southern
New England and the New York City metropolitan area. Prior to a web-based wholesale ordering
application all orders were handled via the phone or fax and generally the ordering process required 6
employees. Due to the efficiency introduced by the web-based application the company was able to
reassign 4 employees to other functions. Application specifications included:
� Provide 100+ franchise locations with the capability to reorder supplies/products online 24/7.
� Produce on-demand (Daily, Monthly, Quarterly and Annual) reports.
� Each franchise had the potential to own several locations and each individual location needed the

ability to order separately, yet all orders had to be as a sub order for the Master Store Franchise.

CHAPTER 8: E-COMMERCE PLATFORMS AND DISTRIBUTED TRANSACTION MANAGEMENT

8-42

� Provide the ability for the each location to track their orders and to notify each location when
their order has shipped via an automatic email.

� Ability to report all orders separated out first by the Master Franchise account and then by each
location for that Master Franchise.

� Ability to send out automatically, monthly invoices for all orders shipped.

The application was developed by Web Global Net and used the following technologies: PHP,
MySQL, Javascripting/AJAX, SSL Certificate, CSS, HTML, On-Line HTML Editor, On-Line Image
Editor, Windows Server, and User Interface / Graphic Design.

8.6.5 Diary Phone -- a Web-based Application to Record People’s Thoughts

The Web-based audio journal application, called Diary Phone, was developed by Stylus to simplify
Ecommerce. It is a 3-tier architecture-based online audio journal application that provides a cost-
effective solution for capturing and recording the significant moments in people lives. Diary Phone is
a web-based application that allows users to record their thoughts on the phone and delivers the audio
file and transcription for a nominal fee. Diary Phone is primarily intended for the busy people who do
not have the time or patience to write their thoughts down. These thoughts may include ideas about
what needs to be bought from where.

When the user dials the toll free number to begin recording, he is automatically connected to the
Interactive Voice Response (IVR) technology provider. Subsequently, the IVR provider is linked
with the Diary Phone web application. The web application allows users to record their voice on a
phone and delivers the audio file with the transcribed material to the end user. Advanced features of
the website include picture gallery and the mixing of pictures and the audio to create a rich user
experience.

Source: http://www.stylusinc.com/Common/SuccessStories/DairyPhone.php

8.7 Case Study: On-line Purchasing for XYZCorp

As stated previously, XYZCorp wants to setup an on-line purchasing system that will allow
customers to purchase the company products through the Web. You have been asked to workout the
details to make it happen. Specifically, you have been asked to do the following:
� Give an overall architecture of the system.
� Give more details about how the payment system will work through a credit card (i.e., show how

a merchant bank and a credit card processing agency will participate in this system).
� Discuss how the PO processing will take place. Show the key players, their role and the flow

between the players.
� How can you include security in this system? What will be the different levels of security?

Discuss flow of security in this system.
� How can XML be used in this system? Give details.
� Survey, evaluate and pick an e-commerce platform that can support this storefront.
� Get the demo copy of the selected e-commerce platform (availability of a demo copy may be a

selection criteria), download it and run some simple experiments to see how these platforms
work.

� What will you need to do to convert this storefront into a virtual storefront (i.e., the customer can
choose items from multiple suppliers)?

Hints:

MODULE (TECHNOLOGIES)

 © – AMJAD UMAR

8-43

Most of these questions can be answered by reviewing the material in this chapter. It is a good idea to
start with the simple on-line purchasing system described in Section 8.2.3. You should draw a sketch
that resembles the following figure and then translate it into a physical architecture ("solution
architecture") that shows the middleware, and the network.

It is a good idea to develop an evaluation criteria before conducting a survey of e-commerce
platforms. The evaluation criteria should include factors such as features provided, extensibility,
interfaces with other systems, availability of a demo copy, number of users, vendor support and
staying power.

Back-endBack-end
SystemsSystems

(Order Processing,(Order Processing,
Inventory Control, Inventory Control,

Payment)Payment)

Purchasing
System

 Product
Catalog

HTTP
HTML
Docs

Web Web
BrowserBrowser

PurchasePurchase
SiteSite

WebWeb
ServerServer

CustomerCustomer
SitesSites Logs

Buyers Seller (Supplier)

Figure 8-12: A Simple Internet-based Purchasing System

8.8 Concluding Comments

This chapter has given an overview of the middleware services and platforms needed to support EC.
At a conceptual level, the IT infrastructure for EC consists of the following :
� Networking services to provide the network transport between EC partners.
� General purpose Middleware services (e.g., web services) to support interactions between

remotely located, including but not restricted to, EC partners. These services are not discussed in
this chapter (we discussed them in the Chapter "Web and XML").

� Basic EC middleware services to provide value added features needed by many EC
applications. Examples of these services are purchasing, payment, shopping carts, billing, EDI
and XML. These services have been discussed in this chapter.

� Advanced EC/EB middleware services needed to support the virtual/next generation
enterprises. Examples of these services include: support for mobility, supply chain management,
enterprise integration software, and electronic markets/trading hubs. These services are discussed
in other chapters.

� Management and support services for administering the electronic enterprises. Examples of
these services include planning, provisioning, fault management, performance management,
change management, and security for electronic enterprises.

E-commerce is often a high-risk business. One way to mitigate high risk is by limiting assets, and this
is accomplished by outsourcing the infrastructure. At present, almost anything can be outsourced,
from a simple merchant account to an entire Web E-commerce site. Outsourcing, it should be noted,
shows its negative side by impacting return margins. So, while outsourcing the infrastructure is a
viable alternative during the initial phase of an e-commerce venture, it may not be adequate during the
growth and mature phases, where a more efficient process would guarantee higher return margins.

CHAPTER 8: E-COMMERCE PLATFORMS AND DISTRIBUTED TRANSACTION MANAGEMENT

8-44

8.9 Review Questions and Exercises

1) Find and describe an on-line purchasing system being used in the industry.

2) What are the key attributes of EC middleware? Which ones are not discussed in this chapter?

3) Discuss the role of transaction processing in e-commerce.

4) What security packages are commercially available to satisfy EC security requirements?

5) Choose two commerce servers discussed in this chapter and compare/contrast.

6) Choose two commercially available commerce servers and compare contrast them.

7) Conduct a literature survey and identify additional commerce servers not discussed in this
chapter.

Time to Take a Break Time to Take a Break
• Overview & eCommerce Middleware
• eCommerce Security
• eCommmerce Platforms
• Distributed Transaction Management

8.10 Attachment A: Distributed Transaction Management Details

8.10.1 Overview of Transaction Management Concepts

Let us now turn our attention to data modification that is typically accomplished through a transaction
manager. The concept of a transaction originates from the field of contract law [Gray 1981, Walpole
1987] in which each contract between two parties (a transaction) is carried out unless either party is
willing to break the law. From a business and end-user point of view, transactions occur at two levels:
customer to business and business to business (see Figure 8-13). In computer science, a transaction is
defined as a sequence of data operations (read, write and manipulation commands) that transform one
consistent state of the system into a new consistent state [Eswaran 1976]. Examples of business
transactions are: electronic transfer of money from one account to another, update of an inventory
database, and purchasing a ticket electronically. To accomplish these business transactions, computer
transactions are executed. Examples of the computer transactions are a group of database operations
(e.g., SQL statements) that need to be executed as a single unit, a program with embedded SQL
statements that updates one or more relational tables, and a Cobol program that modifies indexed files
[Ozsu 1999].

MODULE (TECHNOLOGIES)

 © – AMJAD UMAR

8-45

Bank2
Bank1Customers

Deposits/withdrawals Electronic
Fund Transfer

Figure 8-13: Transaction Example: Customer to Business and Business to Business

8.10.1.1 The ACID Properties

As discussed previously, a transaction has four properties, known as the ACID (atomicity,
consistency, isolation, durability) properties. Detailed discussion of the ACID properties for
transactions can be found in [Gray 1993, Ozsu 1999]. The implication of the ACID properties for
transaction management is as follows:

Serializability (Concurrency Control): This allows transactions to execute concurrently while
achieving the same logical result as if they had executed serially. Concurrency control allows multiple
transactions to read and update data simultaneously, and includes transaction scheduling and
management of the resources needed by transactions during execution. Transactions can be scheduled
serially ("single-threaded") to minimize conflicts or in parallel ("multi-threaded") to maximize
concurrency.

Commit Processing: This allows commitment of transaction changes if it executes properly and
removal of the changes if the transaction fails. The transactions usually "bracket" their operations by
using "begin transaction" and "end transaction" statements. The transaction manager permanently
enters the changes made by a transaction when it encounters the "end transaction" statement;
otherwise, it removes the changes. Transaction managers also log the results of transactions on a
separate medium so that the effects of transactions can be recovered even in the event of a crash that
destroys the database.

Although the ACID properties as well as the serializability and commit processing implications are
important, it has been argued that all these properties amount to atomicity and serializability
[Triantafillou 1995]. This is a pragmatic view that greatly simplifies the discussion of transaction
processing.

8.10.1.2 Transaction Models

Transactions may be classified into the following broad models:
� Single-site versus multiple-site (distributed) transactions: The transactions may be restricted

to a single site (e.g., one database server) or it may span many sites. We will discuss distributed
transactions in the next section.

� Queued or conversational transactions: In queued transaction processing, such as found in
IMS-DC, arriving transactions are first queued and then scheduled for execution. Once execution
begins, the transaction does not interact with the user. In conversational transaction processing,
such as found in CICS and IMS, the transactions interact with the outside world during
execution.

� Short (flat) or long (workflow) transactions: Short, also known as flat, transactions start with a
"begin transaction" instruction and end with a "commit transaction" or "abort transaction"
instruction. Flat transactions are all or nothing at all activities (you cannot commit a portion of a
flat transaction). Long duration transactions (also known as Workflows, Sagas and Flexible
Transactions) consist of a sequence of distributed or queued transactions to perform a multitude
of activities that may span several business units of an organization. Long transactions may be
constructed by chaining or nesting individual transactions. These transactions cannot be typically

CHAPTER 8: E-COMMERCE PLATFORMS AND DISTRIBUTED TRANSACTION MANAGEMENT

8-46

satisfied by a single transaction (distributed or queued). A special case of long transactions is
massive batch updates. These transactions are typically handled by providing a series of "synch
points" at which all the changes made are committed (e.g., a synch point after every 100 hundred
updates).

8.10.1.3 Transaction Managers

A transaction manager (TM), also known as a transaction processing monitor (TP monitor),
specializes in managing transactions from their point of origin to their termination (planned or
unplanned). The TM facilities are traditionally integrated with the DBMS facilities, as shown in
Figure 8-14. This allows database queries from different transactions to access/update one or several
data items. However, some products only specialize in TM with special focus on handling thousands
of OLTP users. These TMs provide a variety of monitoring, dynamic load balancing, process restarts,
and priority scheduling capabilities. Under the control of a sophisticated TM, a transaction may be
decomposed into sub-transactions to optimize I/O and/or response time. Examples of commercially
available TMs are CICS, Encina, and TuxedoIt is not always possible to find separate TMs in
commercial products. In some systems, TM facilities are embedded in communication managers,
operating systems and/or database managers. In particular, most RDBMS vendors at present provide
some TP facilities, known as TP-Lite (see Section 8.10.5).

An introduction to TMS facilities is given in the book [Ozsu 1999]. A detailed classification of
transaction processing systems can be found in [Leff 1991].

Applications

Database
Manager

Transaction
Manager

Network Services
Figure 8-14: Conceptual View of a Transaction Manager

8.10.2 Distributed Transaction Processing Concepts

Distributed transaction processing (DTP) allows multiple computers to coordinate the execution of a
single transaction. This occurs when the data needed by a transaction resides at many computers.
Atomicity of a transaction is of key importance - all the activities performed on different computers
by a transaction must be completed properly or entirely withdrawn in the event of a failure in the
network, application code, and/or computing hardware. A distributed transaction manager (DTM), a
collection of software modules, is responsible for distributed transaction processing. Transactions in a
DTM are known as distributed (also known as multi-site) transactions that access data at several
different sites. A distributed transaction consists of several local (also known as single site)
transactions which access data at one site.

8.10.2.1 Distributed ACID

Each distributed transaction is treated as a single recoverable unit and must pass the "ACID"
(atomicity, consistency, isolation, and durability) test. Consequently, the main responsibilities of a
DTM are as follows:
� Atomicity of transactions through commit processing for failure handling and recovery.
� Serializability of transactions through update synchronization and concurrency control.

MODULE (TECHNOLOGIES)

 © – AMJAD UMAR

8-47

It is important for different sites to reach commit agreement while processing sub-transactions of a
global transaction. The most widely used solution to this problem is the two-phase commit (2PC)
protocol that coordinates the commit actions needed to run a distributed transaction. When a
transaction issues a COMMIT request, the commit action is performed in two phases: prepare for
commit and then commit. If a failure occurs in the prepare phase, then the transaction can be
terminated without difficulty; otherwise, all sub-transactions are undone. Please note that phase 2 is
COMMIT and must complete. Two-phase commit will be discussed in Section 8.10.4.1. Two-phase
commit has been implemented in many systems and is also included in the ISO Transaction
Processing (TP) standard.

Many algorithms for update synchronization and concurrency control have been proposed and
implemented since the mid 1970s. Most algorithms used in practice are variants of two-phase locking
(2PL), which allows a transaction to lock the resources in first phase and unlock in the second phase
after performing reads/writes. Algorithms are also used to resolve distributed deadlocks that occur
when transactions wait on each other. A review of these algorithms can be found in [Umar 1993
Chapter 6].

8.10.2.2 Distributed Transaction Models

Figure 8-15 shows a few basic models of distributed transactions. In case of remote transactions, the
client submits (ships) the request to execute the transaction on a remote system. The remote
transaction either commits or aborts, independent of the requesting system. In case of commit
coordination, the requesting site manages the execution of the transaction across multiple sites. The
protocol used in this case is two-phase commit. Serial execution moves the coordination from one site
to the next to complete a multi-site transaction.

Execution

Execution

Execution
Coordinator

Execution Execution

Execution

Execution Execution

A) Remote
Transaction

b) Commit
Coordination

c) Serial
Execution

Figure 8-15: Models of Distributed Transactions

These three basic models can be combined to produce many other DTP models for long running
(workflow) distributed transactions. In addition, the activities performed on different systems can be
coordinated as queued or conversational transactions. In queued DTP, the transaction managers at
different sites queue the incoming transactions and then execute them later, thus allowing for
organizational boundaries and control between systems. In conversational DTP, the transaction
managers interact with each other directly through the communication network. Note that queued
DTP is not suitable for commit coordination (Figure 8-15b) because the sending site can only
communicate with other sites through queues. Queued model does work quite well for remote and
serial transactions.

CHAPTER 8: E-COMMERCE PLATFORMS AND DISTRIBUTED TRANSACTION MANAGEMENT

8-48

8.10.2.3 Distributed Transaction Managers: The TP-H eavy Approach

A distributed transaction manager (DTM) is responsible for the execution of a distributed transaction
from its beginning to its end and is in charge of ACID in a distributed environment. Thus, a DTM
must address numerous technically challenging issues such as concurrency control in distributed
environments, update synchronization, and data integrity after failures in a distributed environment.
Due to the complexity of DTMs, they are referred to as "TP-Heavy". Research in distributed
transaction management has been actively pursued for heterogeneous databases for several years [Pu
1991, Soparker 1991]. Although detailed technical discussion of these topics is beyond the scope of
this book, we will review the key technical challenges and approaches in Section 8.10.5 and suggest
additional sources of information.

Examples of DTM products are Microsoft's Transaction Processor, NCR's Top-End, BEA's Tuxedo
and Transarc. It is expected that in the future more products will become available and products will
operate across PCs, UNIX and MVS (newer versions are called Z/OS) environments. In addition,
these products will conform to the ISO and X/Open standards for distributed transaction
management. We discuss these standards next. Some interesting references in this area are:
� Vogler, H., and Buchmann, B., "Using Multiple Mobile Agents for Distributed Transactions".

CoopIS 1998: 114-121.
� Weikum, G., "Review - Atomicity versus Anonymity: Distributed Transactions for Electronic

Commerce". ACM SIGMOD Digital Review 1:(1999).
� Ram, P., Do, L., and Drew, P., "Distributed Transactions in Practice".SIGMOD Record 28(3):

49-55 (1999).

Web Services Transactions

 As indicated in a previous chapter, Web Services (WS) is an area of tremendous activity at
present. Two specifications (WS-Coordination and WS-Transactions) are addressing the reliable,
transactional coordination of Web Services. WS-Coordination defines a general framework for
coordination between Web Services with a shared context (e.g., a common databases). However,
WS-Transaction defines two particular coordination types for (short-running) atomic transactions
and (log-running) business transactions. A third development is the Business Transaction
Protocol (BTP) from OASIS that addresses long-running business transactions and deals with
ACID properties accordingly. Work is proceeding on all specifications.

Sources for additional information:

� Little, M., “Transactions and Web Services”, CACM, Oct. 2003

� “Web Services Coordination Specification”, www.ibm.com/developerworks/library/ws-coor/

� “Web Services Transaction Specification”, www.ibm.com/developerworks/library/ws-transpec/

MODULE (TECHNOLOGIES)

 © – AMJAD UMAR

8-49

8.10.3 Data Replication Servers -- The TP-Lite Approach

8.10.3.1 Overview

Data replication is concerned with copying data completely or partially to multiple sites. The main
advantage of replication is that the data is stored where it is used most often. In addition, replicated
data can be accessed from alternate sites. Replication improves the read performance and data
availability, but can degrade the update performance due to the need to synchronize replicated copies.
Depending on the business needs, data may be replicated to support operational processing or
informational processing. Here are some examples of data replication:
� Price information is replicated at all stores to speed up the checkout counter processing. The price

information may be completely or partially replicated.
� Skeleton customer information (e.g., customer name, account number, credit limit) is kept at all

different stores to speed up the order processing. Complete customer information is kept at a
central site.

� Data warehouses containing portions of data from operational systems are constructed by many
enterprises to support decisions in marketing and business planning.

� Detachable computers (e.g., mobile computers) are not always connected to the data source and
therefore, typically keep redundant data. Detachable computers usually extract needed data and
store it on their local disk for access while operating in a detached mode.

Data may be replicated for the following reasons [White 1994, Triantafillou 1995]:
� Distribute data to where it is used to improve performance, e.g., the price file.
� Data may be replicated to improve data availability.
� Data may be copied to detachable computers for off-line processing.
� Data from different decentralized servers or detachable clients may be integrated into one copy.
� Data is extracted from multiple operational databases and loaded/replicated into a data

warehouse.
� The database on some platforms may have better tools for application development and/or

administration. Thus, it may be quicker and cheaper to develop and maintain new applications
around the replicated data on new platforms.

� Some platforms may provide better and easier data access and manipulation tools.
� Data may be replicated during a gradual migration period.

However, data replication can be an expensive and time-consuming activity that must be carefully
coordinated. In particular, the issue of keeping the replicated data synchronized with master/primary
data is of key importance.

8.10.3.2 General Architecture of Replication Server s

Figure 8-16 shows a set of logical components of a generalized Data Replication Server. In essence, a
data replication server provides software components that replicate the changes being made at a
primary site to one or more secondary sites. These logical components are customized and specialized
by different vendors depending on how the data is initially loaded, how it is synchronized (refreshed
or incrementally updated), whether the replicated data is read-only or updateable, how the data
changes are captured, and how frequently the data is synchronized.

Data Extractor: The data extractor component is responsible for selection (capture) of needed data
from the primary databases. Entire database may be selected for refresh or only deltas (i.e., data
changes) may be captured. Data captures for refresh is straightforward, but requires considerable
effort for delta captures. The delta captures can be achieved through a variety of techniques such as
the following:

CHAPTER 8: E-COMMERCE PLATFORMS AND DISTRIBUTED TRANSACTION MANAGEMENT

8-50

� Capture the data changes from the logs. The capture program continuously monitors the logs, and
extracts the needed changes. This technique is commonly known as "log scraping".

� Use database triggers, commonly available in RDBMSs, to capture the changes. The triggers can
be set for times (e.g., 6 p.m. every day) or other events such as whenever a new order arrives.

� Employ programmatic captures from the database. A capture program scans the source databases
and selects data based on predefined business rules. The capture logic is application dependent
and not part of the replication server. An example of a business rule is: "extract all data since
yesterday 5 p.m. on the highest sales in the southwestern region of the company".

ReplicationReplication
ManagerManager

Primary
Data

Extracted
Data

Data SynchronizerData Synchronizer
(Read only
If update,
send a transaction
to Primary)

1
2

3

4 4

Data ExtractorData Extractor
•log scraping
•triggers
•program driven

primary primary
sitesite Many choices

•Send immediately
•Send periodically
•Accumulation levels
(100 changes at a time)

Data SynchronizerData Synchronizer
(Read only
If update,
send a transaction
to Primary)

Secondary
sites

Figure 8-16: Data Replication Server Architecture

There are many trade-offs between these approaches. The log scrapers are off-line processes and do
not interfere with the operation of the system. The triggers provide more flexibility but require extra
programming effort. The specialized data capture programming gives maximum flexibility to the
end-users, but can be an expensive undertaking.

The data extractor component may also transform the primary data into the secondary data formats, if
needed. This includes conversions of data formats and data models (e.g., IMS to RDBMS). Many
data replicators convert data to ASCII format and/or transform it into a target data load format. For
most of the data replications, the need for extensive data conversion may not exist because the same
data in the same format may be replicated at several sites (e.g., customer information at multiple
sites). However, some applications such as data warehousing require considerable transformations
such as data consolidation (unification of different values), summarization, and derivation (generation
of new fields).

Replication Manager: This component is the heart of the data replication server. It receives the data
from the primary site(s) and transmits it to the appropriate secondary site(s). The replication manager
may itself reside on the primary site(s), on a separate "replication server machine", on secondary
site(s), or on a combination. Associated with the replication manager is a directory which shows what
data is to be extracted, where it is to be sent (i.e., the secondary site(s)), how frequently the extracted
data is to be sent to the secondary site(s)), and if the sent data is to be applied immediately or delayed.

The replication manager usually includes an administrative module that enables users to define,
generate, initialize, and customize the various replication server components. Examples of the
administrative functionalities are:
� Generation of data extraction and conversion programs.

MODULE (TECHNOLOGIES)

 © – AMJAD UMAR

8-51

� Specification of the primary and secondary sites for the replicated data items.
� Specification of the parameters to govern the operation of various components.

The administrative functionality can be provided through a GUI operating from a desktop. The
generated programs can run on a desktop or on the primary data site. The administrative facilities may
also include scripting languages to ease the burden of operating and administering a Data Replication
Server.

Data Synchronizer: This component is responsible for transmission of captured data from the
primary site to the secondary site(s) and resultant data load/update at the secondary site(s). The
secondary data may be replaced entirely with the new data (refreshed) or it may be updated
selectively to reflect changes (deltas). In many data replication servers, a staging area is created on
the primary sites to store the captured data. Data synchronizers employ remote data transfer service
such as bulk data transfer or interactive data exchanges depending on how quickly the secondary data
is to be synchronized. Depending on the amount of data to be transmitted and loaded, special
techniques may be used to speed up the transmission/load process (e.g., bulk database load). Typical
options for this component are:
� Establish client/server sessions between the primary and secondary sites to apply the updates in

real time as they become available or employ bulk data transfer for batch update processing (e.g.,
end of day processing).

� Resolve conflicts, if applicable. Many older replicators allowed updates of primary copy only,
thus no conflict resolution was needed. Newer replication servers (e.g., the latest Oracle
Replicator) are beginning to add "advanced" features that allow multiple copies to be updated
based on a conflict resolution scheme. Typical conflict resolution schemes are based on time
stamps (i.e., if copy A is being updated but copy B has more recent changes, then A is not
updated and the request is sent to copy B).

� Broadcast the data to all secondary sites simultaneously or serialize the updates one secondary
site at a time.

� Lock all secondary sites when they are being updated to assure that all secondary sites have the
same copy of data or ignore this locking.

� Apply updates immediately when they are received at the secondary sites or perform bulk
updates periodically.

� Use bulk load utilities and/or SQL load for RDBMSs.

Framework for Analyzing/Selecting Data Replication Servers. Several data replication servers are
becoming commercially available from a diverse array of vendors. Here is a partial list of data
replication servers, listed alphabetically:
� IBM Data Replication Toolset (Data Refresher, Data Hub, Data Propagator)
� Oracle Replicator
� Prism Warehouse manager
� Sybase Replication server
� Trinzic Infopump and InfoHub
� Praxis Omni Replicator

Some of these servers are oriented towards data warehousing while the others are intended for
distributed transaction processing. It is beyond the scope of this book to discuss these and other data
replication products. However, the generic architecture presented in the previous section can be used
as a basis to analyze, evaluate, and select the most appropriate data replication tools. For example, the
generic architecture can be used to analyze the data replication servers based on the following factors:
� Type of primary data sources
� Type of secondary sites (read-only or update)
� Mechanism to capture data changes (e.g., log scrapers versus triggers)

CHAPTER 8: E-COMMERCE PLATFORMS AND DISTRIBUTED TRANSACTION MANAGEMENT

8-52

� Data refresh and/or delta update capabilities
� Real-time versus periodic batch update synchronization
� Conflict resolution options

Table 8-4 shows the factors that can be used to analyze/evaluate data replication servers. These
factors are presented in terms of the logical architectural components presented in the previous
section. Table 8-4 can be used as a basis for generating questions that can be included in a request for
proposal (RFP).

Table 8-4: Analysis Matrix For Data Replication Servers

Evaluation Factors Product1 Product2 Product3

Extraction capabilities
� Primary data supported (e.g., IMS, DB2, Oracle,

Sybase)
� Ability to select records/fields from primary

databases
� Method of data extraction (log scraping, triggers,

programs
� Any data conversions performed

Server management/administration capabilities
� Automatic extraction/conversion of code generation

capability
� Quality of code generated
� Completeness of code generated
� Efficiency of generated code
� Ease of use (user GUI interface, training

requirements)
� Data dictionary capability (ties to data dictionaries)
� Productivity aids (e.g., generation of scripts, JCL

created)

Update synchronization capabilities
� Client/server sessions between the primary and

secondary sites or bulk data transfers
� Broadcast the data to all secondary sites or serialize
� Lock all secondary tables (or rows) when they are

being updated or ignore this locking
� Apply updates immediately when they are received

at the secondary sites or perform bulk updates
periodically

� Use bulk load utilities and/or SQL load for RDBMSs

Operability (environment needed for tool operation, e.g.,
PCs, UNIX workstations)

MODULE (TECHNOLOGIES)

 © – AMJAD UMAR

8-53

Vendor maturity (strength of company, market position,
etc.)

Replication server maturity (product reliability, product
direction)

Product support (based on other client feedback and
customer service contracts, technical support, help desk
support)

8.10.4 Two -Phase Commit ("TP-Heavy") Versus Data Replication Servers

("TP-Lite")

Implementation of algorithms for failure handling of distributed transactions is an expensive
undertaking. Two-phase commit (2PC) and Data Replication Servers are two different approaches to
guarantee integrity of distributed data under failures. Two-phase commit as well as Replication
Servers have some trade-offs. Due to the academic and industrial activity in two-phase commit and
the widespread availability of Replication Servers, a careful analysis of the trade-offs between using
two-phase commit-based algorithms versus using Replication Servers is essential for several practical
situations.

The reader should keep in mind that both issues are transparent to the end users. The discussion in this
section is intended for a general understanding of the issues and approaches that should lead to
improved strategies for the overall architecture.

8.10.4.1 Two-Phase Commit

Two-phase commit is the principal method of ensuring atomocity of distributed transactions. For a
single-site transaction, updates are made permanent when a transaction commits, and updates are
rolled back if a transaction aborts. However, a distributed transaction may commit at one node and
abort at another. For example, an update completes at node n1 and fails at n2. A transaction,
distributed or not, may terminate abnormally due to two reasons: "suicide", indicating that a
transaction terminates due to an internal error like a program error, or "murder" to indicate an external
error like system crash [Gray 1979]. It is the responsibility of two-phase commit software to remove
all changes made by a failing transaction from all nodes so that the transaction can be re-initiated. For
atomic actions to be recoverable, the following two conditions must be met:
� Updated objects are not released until the action is completed.
� The initial states of all objects modified by the action can be reconstructed through the use of a

log.

The two-phase commit protocol adheres to these conditions and coordinates the commit actions
needed to run a transaction. When a transaction issues a COMMIT request, a series of actions are
initiated. These actions are divided in the following two distinct phases:

Phase 1 (Prepare): This phase is preparatory, the commit is not actually carried out in this phase.
The participating sites in this phase record enough information in the logs so that a transaction can be
rolled back or committed, if needed. The specific steps in this phase are:

1. The "commit global coordinator" (the initiating node) sends a PREPARE message to all cohorts
(commit coordinators running on nodes participating in the execution of this transaction).

2. Each cohort logs enough information so that it can roll back or commit the transaction.

CHAPTER 8: E-COMMERCE PLATFORMS AND DISTRIBUTED TRANSACTION MANAGEMENT

8-54

3. Each cohort sends one of the following responses to the global coordinator:

 "prepared" - the modified data has been prepared for commit or rollback.

 "read-only" - no data on the node has been modified, so no prepare is needed.

 "abort" - the node cannot successfully prepare.

4. The global coordinator waits for a reply from all cohorts.

5. If all cohorts indicate "prepared", then the next phase is initiated; if any cohort indicates "abort",
then the entire transaction is rolled back at all sites; if a cohort indicates "read-only", then that cohort
is bypassed from commit processing (this expedites the two-phase commit processing).

Phase 2 (Commit): If all cohorts respond "prepared" and/or "read-only", then the initiating site
(global coordinator):

1. Performs Create/Update/Insert/Delete and writes COMMIT entry into the log.

2. Sends a COMMIT message to each cohort.

3. Waits for positive response from each cohort. If no response, then write abort message and
terminate the transaction.

4. Writes a complete entry in log and terminates.

The key problem in two-phase commit is failure of the global coordinator (i.e., the originating node
fails during commit processing). In addition, two-phase commit causes tremendous delays and
"discomfort" in an unreliable environment (it is tough to succeed in two-phase commit if any cohort
fails for one reason or another!).

The protocol described here shows the basic two-phase commit processing. A great deal of intricate
processing takes place at the originating node and cohorts (see [Gray 1993] for details). Two-phase
commit (2PC) has been implemented in several systems with some variations to deal with different
failure conditions. In general, two-phase commit is offered by DBMS vendors as automatic (i.e.,
totally done on behalf of application developers) or programmatic (i.e., 2PC subroutines provided to
application developers for customized usage). An extensive discussion of the reliability issues for no
data replication, data replication, full replication, and network partitioning is given by [Garcia-Molina
1987].

8.10.4.2 Trade-offs Between Two Phase Commit and Re plication Servers

Two-phase commit (2PC) and Data Replication Servers are two different approaches to guarantee
integrity of distributed and replicated data under failures. The fundamental difference between these
two approaches is the transaction versus periodic propagation of updates (update synchronization).

Transaction level update synchronization is the basis of 2PC. In this synchronization scheme, a
distributed transaction is treated as an atomic action and thus, all updates must be synchronized
during a distributed transaction or the entire transaction must be rolled back. This is the basic reason
for the somewhat complicated steps of 2PC. Periodic update synchronization, on the other hand,
synchronizes updates after completion of a transaction. This approach, used in the commonly
available Data Replication Servers, does not respect the boundaries of distributed transactions (i.e.,
data is synchronized after a transaction has completed).

Both approaches have certain advantages and disadvantages. 2PC has the following major pluses and
minuses:

MODULE (TECHNOLOGIES)

 © – AMJAD UMAR

8-55

+ All updates are simultaneously available to end-users.

+ Guarantees atomicity of a distributed transaction.

+ Fully transparent to end-users.

+ Many improvements have been introduced to increase robustness, flexibility, and efficiency.

- Chances of failures are high in unreliable systems (transactions abort too many times).

- Takes too long if many copies of data exist (too many cohorts).

- Creates difficult situations if the global commit coordinator (the originating site) fails during 2PC.

- Does not allow many customizations and complicated application rules (e.g., retry prepare if cohort
responds with "abort", apply an update after certain time).

Owing to these limitations of 2PC, Replication Servers are becoming a viable alternative for many
organizations. However, the periodic update synchronization scheme used in many Replication
Servers also has some pluses and minuses:

+ Very flexible (can be configured for different situations such as events, time, triggers, etc.).

+ Can offer additional capabilities (i.e., conversion and transformation of data).

+ Can be used for large and occasionally unreliable networks.

- Requires a primary/secondary copy (this paradigm may not fit some applications). This restriction is
being removed in modern replication servers by introducing conflict resolutions that are based on
rules or manual intervention.

- Some notion of global time must be maintained to assure that updates are synchronized at certain
times.

Owing to these trade-offs, some systems provide transaction as well as periodic update
synchronization. For example, several Replication Servers allow transactional update synchronization
that employs 2PC. It should be noted that security is a serious consideration for replication. That is,
more copies of the data means more places for a hacker to visit and corrupt. In addition, update
intensive applications may be better candidates for replication since 2PC may just become too
unwieldy and time consuming.

The following guidelines are suggested to the users of 2PC and Replication Servers [McGovern
1993]:
� Keep data replication as minimal as possible. Large number of replicates can cause serious

problems in 2PC as well as Replication Servers.
� If data must be synchronized as a transaction, then keep the number of copies small and use 2PC.
� If concurrency requirements outweigh "subsecond" data integrity requirements (i.e., data can be

synchronized periodically) then use Replication Servers.
� If the network and nodes are unreliable, then use Replication Servers.

Extensive discussion of this topic can be found in [Schussel 1994, Gray 1993, Garcia-Monila 1987].

CHAPTER 8: E-COMMERCE PLATFORMS AND DISTRIBUTED TRANSACTION MANAGEMENT

8-56

8.10.5 Distributed Transaction Processing: TP-Less, TP-Lite, TP-Heavy

In distributed environments, approaches to handle transactions (data update) vary widely due to the
wide range of configurations (small PC LAN-based systems versus large systems involving multiple
mainframes), query versus update traffic (ad hoc SQL queries versus massive updates), vendor
offerings (database vendors versus TP vendors), and user/developer background (PC users/developers
versus mainframe users/developers). The approaches being used at present fall into the following
categories:
� TP-Less, i.e., do not use any transaction management considerations.
� TP- Lite, i.e., use database procedures to handle updates.
� TP-Heavy, i.e., use a transaction manager to handle updates.

Another approach, somewhere between TP-Lite and TP-Heavy (perhaps TP-medium), is becoming
increasingly popular due to the growth in messaging-oriented middleware (MOM). See the sidebar
"Running to MOM for Distributed Transaction Processing".

8.10.5.1 TP-Less

In this case, the database and file management capabilities for retrieving and updating data are used.
For example, some relational database vendors treat each SQL statement as a transaction. Thus, each
SQL select, update, insert, and delete is treated as a unit of consistency. However, a group of SQL
statements are not combined into a transaction that must be committed or aborted. Similarly, in file
systems, each file read and update is treated by the users as a transaction (there is a potentially serious
problem here because many file systems do not provide the capabilities to treat each file I/O as a
transaction).

TP-Less is currently being used heavily in small C/S environments with PCs and UNIX machines. In
particular, this approach is favored heavily when all data needed by the users is on one SQL server.
TP-Less has the advantage of being efficient and inexpensive (no additional overhead and software is
needed). However, it has several limitations. First, it cannot be used when some data is in flat files
(the ability of file managers to provide ACID properties should be examined carefully). Second,
related updates cannot be grouped together as a transaction. Finally, all data must reside on one site
(TP-Less may use a data replication server to handle duplicate data on multiple sites).

8.10.5.2 TP-Lite

TP-Lite goes a step beyond TP-Less by implementing each transaction as a stored procedure. Recall
that a stored procedure is a collection of SQL statements that are performed as a unit (they may also
have some non-SQL logic contained in them). A user can define, for example, a set of SQL
statements that update a customer account and store them in a database management system as a
stored procedure that is invoked from different programs that need to update customer account
information. Any updates that need to be performed together and any retrievals that are dependent on
these updates can be imbedded in a stored procedure. In addition, stored procedures can enforce any
additional integrity and security restrictions. TP-Lite capabilities are provided by most RDBMS
vendors such as Informix, Oracle, and Sybase (basically, any vendor that supports stored procedures
is in the TP-Lite business).

TP-Lite is mainly the invention of database vendors to provide some transaction management
capabilities. This approach, when combined with data replication servers to synchronize replicated
data, appeals to many C/S application developers. TP-Lite is being widely used to manage
transactions in C/S environments where the data resides on a single SQL server. TP-Lite is better than
TP-Less (it supports a group of SQL statements as a transaction), but it does not provide any global

MODULE (TECHNOLOGIES)

 © – AMJAD UMAR

8-57

transaction control. In addition, TP-Lite cannot be used to handle transactions that need access to data
stored in flat files (stored procedures are the domain of database vendors).

Running to MOM for Distributed Transaction Processing

Message-oriented middleware (MOM) is gaining popularity for many applications, including light-
weight implementations of distributed transaction processing (DTP).

MOM, discussed in detail in a previous chapter, allows an application A to put a message on a queue
that is later picked up by application B (or C and D) to process asynchronously. A queue can be a print
stream or any intermediate file. This simple approach can be used to link existing applications very
easily without modifying any code at either side (i.e., redirect the output of application A to a disk
queue and redirect the input of system B to the same disk queue). This approach does not require the
additional software development on either side (you do not need a client that issues a RPC and a server
that receives, parses and dispatches processes). This also eliminates the need for staff training on both
sides.

The main appeal of MOM for DTP is that the queue messaging can be transactional (i.e., MOM can
make sure that only one message is transferred and that automated rollback recovery is available). This
is a very familiar territory for mainframe-based transaction managers such as IMS (IMS has been using
queued messages since the 1970s).

MOM providers such as IBM, DEC, Peer Logic and Covia Technologies are actively pursuing this
opportunity.

8.10.5.3 TP-Heavy

TP-Heavy uses a separate TM to manage transactions in C/S environments. As discussed previously
in this chapter, these TMs maintain the ACID properties of transactions that may span many database
servers (i.e., they support DTP). For example, they allow PCs to initiate complex multi-server
transactions from the desktop. TP-Heavy systems support the DTP functions discussed earlier in this
chapter (i.e., global concurrency control, distributed two-phase commit, failure handling). More
importantly, TP-Heavy systems are not restricted to database transactions -- they manage all data (flat
files, databases, and queues). Examples of TP-Heavy products for C/S environments include CICS,
Encina, Tuxedo, and Top End.

TP-Heavy has the obvious appeal since it takes transaction management seriously. TP-Heavy is
essential when transactions involve data stored in multiple formats on multiple sites. However, TP-
Heavy may be too "heavy" for small C/S applications that need access to data stored on a single SQL
server.

8.10.5.4 Trade-offs Between TP-Lite and TP-Heavy

It appears that TP-Lite as well as TP-Heavy have certain pluses and minuses in C/S environments
(TP-Less is too restricted for most serious business applications). The following questions should be
asked by an application developer before deciding on TP-Lite versus TP-Heavy:
� In what format is the data stored (databases, flat files)? If the data is stored in multiple databases

and flat files, then TP-Lite is not suitable (database procedures only work in RDBMS
environments).

CHAPTER 8: E-COMMERCE PLATFORMS AND DISTRIBUTED TRANSACTION MANAGEMENT

8-58

� How many SQL servers does the data reside on? If the application needs to update and commit
data that is stored on multiple servers, then TP-Heavy should be used (database procedures
cannot participate with other database procedures in a distributed transaction).

� What is the requirement for data synchronization? If the data synchronization interval is periodic,
then a TP-Lite solution combined with a data replication server may be useful to handle updates
against replicated data.

� What are the requirements for performance and load balancing? TP-Lite solutions with database
procedures are much faster, on the surface, than the TP-Heavy solutions that require
synchronization between sites. But, TP-Heavy solutions provide many sophisticated procedures
for dynamic load balancing, priority scheduling, process restarts, and pre-started servers that are
especially useful for large-scale production environments. These features are the main strength of
TP-Heavy products because many of these products have been used over the years to handle
thousands of transactions in production OLTP (on-line transaction processing) environments.

In general, small C/S applications are being deployed by using TP-Lite, while large mission critical
C/S applications, especially the ones that were "downsized" from mainframe OLTP environments,
are using TP-Heavy. In the meantime, many PC LAN-based applications are quite happy with TP-
Less. In fact, TP-Heavy is difficult to implement when different vendor DBMSs are involved.

8.11 Additional Information

A large number of URLs give information about different aspects of EC platforms that we have
discussed. Exploring these sites is left as an exercise for the reader.

In addition, the following books and articles may be of value (the web articles are indicated by using
the [Author/Company Year] convention):
[1] [Cooper 2001], “Merchant Account Tutorial”,

http://www.iboost.com/profit/selling_products_or_services/getting_started/merchant_accounts/3077.html
[2] [DeFatta 2001] – “Third Party Payment Processors Explained”, http://www.workz.com/html/2169.html
[3] [EasyCart 2003] – “Shopping Cart provider”, http://www.easycart.com/main.html
[4] Hamilton, S., “E-Commerce for the 21st Century”, IEEE Computer, May 1997.
[5] Kalakota, R. and Robinson, M., "e-Business 2.0 -- Roadmap for Success", Addison Wesley, 2000.
[6] Kalakotta, R., and Whinston, A., "Frontiers of Electronic Commerce", Addison Wesley, 1996.
[7] Kay, E., "Compaq wants your Internet business", ComputerWorld, April 12, 1999.
[8] Ketchpel, S. , H. Garcia-Molina, Making "Trust Explicit in Distributed Commerce Transactions", 16th

International Conference on Distributed Computing Systems (DCS96), 1996.
[9] Ketchpel, S. , H. Garcia-Molina, "Distributed Commerce Transactions with Timing Deadlines and Direct Trust",

IJCAI 1997.
[10] Luftman, J., "Competing in the Information Age: Strategic Alignment in Practice", Oxford University Press,

1996.
[11] Magretta, J., “The Power of Virtual Integration: An Interview with Dell Computer’s Michael Dell”, Harvard

Business Review, March-April 1998.
[12] [Miller 2000] – “Choose Your Shopping Cart”, http://www.workz.com/html/1509.html
[13] Özsu, T., and P.Valduriez: "Distributed and Parallel Database Systems. The Computer Science and Engineering

Handbook", Allen B. Tucker (Ed.), CRC Press, 1997.
[14] [PaySol 2001] – “Payment Solutions”, http://e-commerce.internet.com/reviews/glance/0,,3691_5,00.html,
[15] Shea, P. “New opportunities in ecommerce”, Australasian Business Intelligence Jan 24, 2003
[16] Shunter, M., and Waidner, M., “Architecture and Design of a Secure Electronic Marketplace”, Procs. JENC8:

8th Joint European Networking Conference, Edinburgh, May 12-15 1997.
[17] Steinauer, D.D., S.Wakid, S.Rasberry, Trust and Traceability in Electronic Commerce. StandardView vol. 5 n.

3, Sept. 1997.

MODULE (TECHNOLOGIES)

 © – AMJAD UMAR

8-59

[18] Stylianou, A., et al, “Perceptions and attitudes about eCommerce development in China: an exploratory study”,
Journal of Global Information Management April-June 2003

[19] [Sussis 1999] – “Accepting Credit Card Payments”, http://e-commerce.internet.com/solutions/e-
consultant/print/0,,9571_118621,00.html,

[20] Tennenbaum, J., Chowdhry, T., and Hughes, K, “Eco System: An Internet Commerce Architecture”, IEEE
Computer, May 1997.

[21] Turban, E., et al, "eCommerce: A Managerial Approach", Prentice Hall, 2nd edition, 2002.
[22] Tygar, J., "Atomicity in Electronic Commerce", Proc. of ACM Symposium on Principles of Distributed

Computing, May 23-26, 1996.
[23] Umar, A., "Object-Oriented Client/Server Internet Environments" Prentice Hall, February 1997.
[24] Umar, A., "Application (Re)Engineering: Building Web-based Applications and Dealing with Legacies",

Prentice Hall, May 1997.
[25] Umar, E., “EC Bedrock”, Database Programming and Design, Nov. 1997.
[26] Wardley, M. and Pang, A., Internet-enabling Enterprise Applications, ComputerWorld, April 12, 1999.
[27] [Walsh 1999] – “Understanding Internet Payment Protocols”, http://w

ww.nwc.com/shared/printArticle?article=nc/1009/1009ws33.html&pub=nwc

